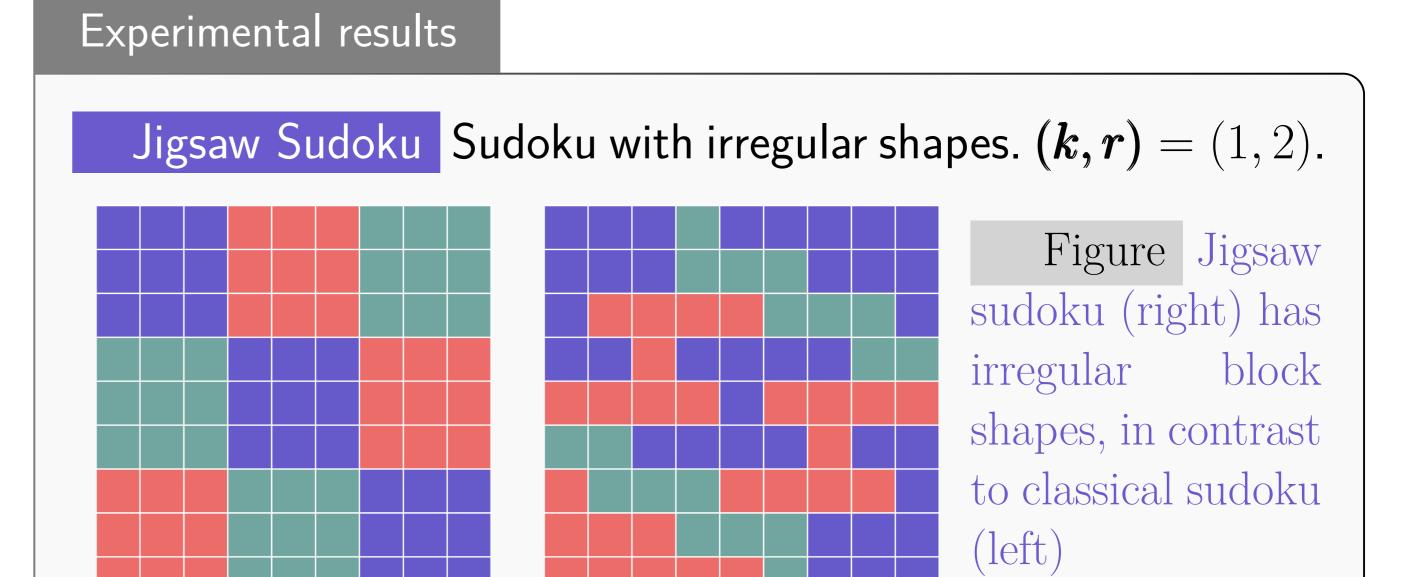
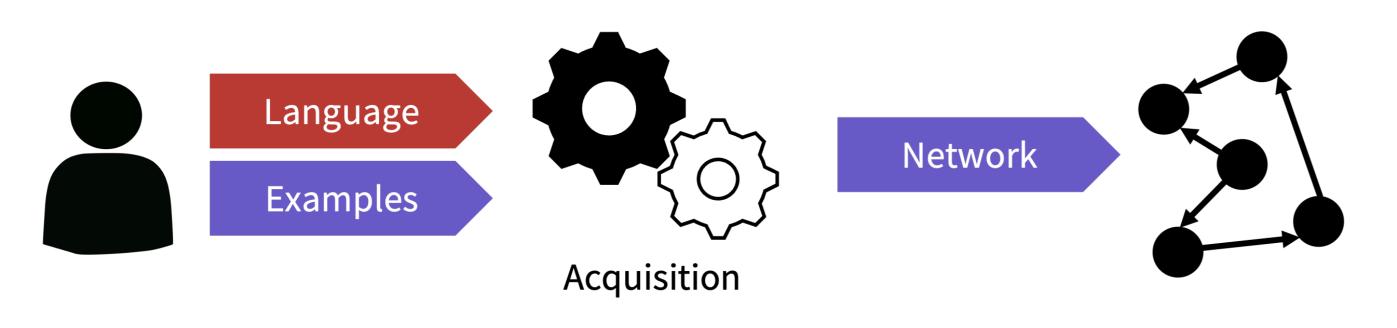
Learning Constraint Networks over Unknown Constraint Languages

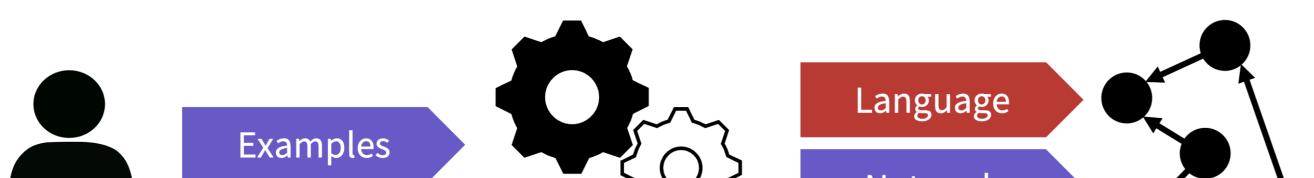
Christian Bessiere | Clément Carbonnel | Areski Himeur University of Montpellier, CNRS, LIRMM, Montpellier, France {bessiere, clement.carbonnel, areski.himeur}@lirmm.fr


Background

A constraint network consists in variables over a finite domain and **constraints**, i.e. relations between variables that must be satisfied in any **solution**. Relations in a network are its **language**.

Network representing Sudoku Example


Variables: 81 cells of domain [1..9]**Constraints:** $x \neq y$ if on the same row, column or 3×3 block Language: $\{\neq\}$


Constraint Acquisition

Learns a network automatically from examples of solutions and nonsolutions. Current approaches require the language of the output network as input.

Language Acquisition

Our method constructs a suitable constraint language as part of the learning process.

Variables: $x_1, ..., x_9$. Schur's Lemma **Constraints:** $NotAllEqual(x_i, x_j, x_k)$ if i + j = k. (k, r) = (1, 3).

Subgraph Isomorphism Map C_5 in G having 20 vertices and 100 edges. Variables: $x_1, ..., x_5$. Constraints: for all (i, j), $x_i \neq x_j \text{ and } (i,j) \in C_5 \Rightarrow (x_i, x_j) \in G. (k,r) = (2,2).$

Golomb Ruler Variables: $x_1, ..., x_{10}$ on [0..60]. Constraints: $|x_i - x_j| \neq |x_k - x_l|$ for all i, j, k, l. (k, r) = (1, 4).

8-Queens Variables: $x_1, ..., x_8$. Constraints: $x_i \neq x_j$ and $|x_i - x_j| \neq |i - j|$ for all *i*, *j*. (*k*, *r*) = (9, 2).

Numerous languages can be used. Some are clearly unsatisfactory from a practical point of view (e.g. overfitting).

Intuition: the best language is the "simplest". **Approximation:** minimizing the arity and number of relations.

Sub-problem: LANGUAGE-FREE ACQUISITION

Instance: Set of examples labelled as solutions and nonsolutions, two integers k and r.

Question: Is there a network over a language of size $\leq k$ and arity $\leq r$ that correctly classifies the examples?

▶ NP-complete even for k = r = 1.

The Method

Jigsaw Sudoku	200 to 1400	(1, 2)				100%	$\simeq 30s$
Schur's Lemma	50	(1, 3)	~	×	×	87%	23 <i>s</i>
	800	(1, 3)				100%	2s
Subgraph Isomorphism	400	(2, 2)	×	×	×	98%	1s
	800	(2, 2)	×		×	100%	2s
Golomb Ruler	1600	_	-	_	_	_	> 12h
	3200	(1, 3)	×		×	100%	7h
8-Queens	184	(3, 2)	×	×	×	99%	17s
Table E	: number	r of exar	nples;	Lang:	targe	t langua	ge found;

that correctly classifies the examples.

- Strategy: minimize $k + r^2$
- **Tie-breaking:** lower arity, more constraints, tighter constraints

General Method

Construct and solve a model for each (k, r) following a **bottom-up** minimization:

- Convert to an instance WEIGHTED PARTIAL MAX-SAT
- Compute an optimal network or prove that none exists
- Output the first constraint network found

Eq: equivalent network found (i.e. same solutions); Target: target network found; Acc: accuracy measured on 2 000 unseen examples. Results for Jigsaw depend on shapes.

Future work More sophisticated notions of simplicity and detecting topological information.

TALOR ANITI SDM

Work supported by EU Horizon 2020 TAILOR (GA N° 952215), ANITI (GA N° ANR-19-PI3A-0004) and ANR AXIAUM (GA N° ANR-20-THIA-0005-01). Experiments performed with the MESO@LR-Platform at University of Montpellier.