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Background
A constraint network consists in variables over a finite domain
and constraints, i.e. relations between variables that must be sat-
isfied in any solution. Relations in a network are its language.

Example Network representing Sudoku

Variables: 81 cells of domain [1..9]
Constraints: x ̸= y if on the same row, column or 3× 3 block
Language: {̸=}

Constraint Acquisition
Learns a network automatically from examples of solutions and non-
solutions. Current approaches require the language of the output
network as input.

Language Acquisition
Our method constructs a suitable constraint language as
part of the learning process.

Numerous languages can be used. Some are clearly unsatisfactory
from a practical point of view (e.g. overfitting).
—
Intuition: the best language is the ‘‘simplest’’.
Approximation: minimizing the arity and number of relations.

Sub-problem: Language-free Acquisition

Instance: Set of examples labelled as solutions and non-
solutions, two integers k and r.
Question: Is there a network over a language of size ≤ k

and arity ≤ r that correctly classifies the examples?

▶ NP-complete even for k = r = 1.

The Method
Goal Compute a constraint network with minimum (k, r)

that correctly classifies the examples.
•Strategy: minimize k + r2

•Tie-breaking: lower arity, more constraints, tighter constraints

General Method

Construct and solve a model for each (k, r) following a
bottom-up minimization:
•Convert to an instance Weighted Partial Max-Sat
•Compute an optimal network or prove that none exists
•Output the first constraint network found

Experimental results

Jigsaw Sudoku Sudoku with irregular shapes. (k, r)(k, r)(k, r) = (1, 2).

Figure Jigsaw
sudoku (right) has
irregular block
shapes, in contrast
to classical sudoku
(left)

Schur’s Lemma Variables: x1, ..., x9. Constraints:
NotAllEqual(xi, xj, xk) if i + j = k. (k, r)(k, r)(k, r) = (1, 3).

Subgraph Isomorphism Map C5 in G having 20 vertices and
100 edges. Variables: x1, ..., x5. Constraints: for all (i, j),
xi ̸= xj and (i, j) ∈ C5 ⇒ (xi, xj) ∈ G. (k, r)(k, r)(k, r) = (2, 2).

Golomb Ruler Variables: x1, ..., x10 on [0..60]. Con-
straints: |xi − xj| ̸= |xk − xl| for all i, j, k, l. (k, r)(k, r)(k, r) = (1, 4).

8-Queens Variables: x1, ...x8. Constraints: xi ̸= xj and
|xi − xj| ̸= |i− j| for all i, j. (k, r)(k, r)(k, r) = (9, 2).

Problem |E| (k, r) Lang Eq Target Acc Time

Sudoku 100 (1, 2) 84% 129s

200 (1, 2) 100% 35s

Jigsaw
Sudoku

200 to
1400

(1, 2) 100% ≃ 30s

Schur’s 50 (1, 3) 87% 23s

Lemma 800 (1, 3) 100% 2s

Subgraph 400 (2, 2) 98% 1s

Isomorphism 800 (2, 2) 100% 2s

Golomb 1600 - - - - - > 12h

Ruler 3200 (1, 3) 100% 7h

8-Queens 184 (3, 2) 99% 17s

Table |E|: number of examples; Lang: target language found;
Eq: equivalent network found (i.e. same solutions); Target: target
network found; Acc: accuracy measured on 2 000 unseen examples.
Results for Jigsaw depend on shapes.

Future work More sophisticated notions of simplicity and
detecting topological information.

Work supported by EU Horizon 2020 TAILOR (GA N° 952215), ANITI (GA N° ANR-
19-PI3A-0004) and ANR AXIAUM (GA N° ANR-20-THIA-0005-01).
Experiments performed with the MESO@LR-Platform at University of Montpellier.


