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Background

A constraint network:
m a set of variables over a finite domain

m a set of constraints, i.e. relations between

variables that must be satisfied in any
solution
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Constraint programming is an expressive, flexible, efficient paradigm for solving problems.
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Background

A constraint network:
m a set of variables over a finite domain

m a set of constraints, i.e. relations between
variables that must be satisfied in any
solution

Constraint programming is an expressive, flexible, efficient paradigm for solving problems.

Challenge: The modeling process is a significant bottleneck
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The Solution: Constraint Acquisition

Passive Constraint Acquisition

Instance: Set of examples (assignments labelled as solutions and non-solutions).

Goal: Find a constraint network consistent with the examples.

- a{g):} Constraint Network ﬂ

Acquisition
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The Solution: Constraint Acquisition

Passive Constraint Acquisition

Instance: Set of examples (assignments labelled as solutions and non-solutions).

Goal: Find a constraint network consistent with the examples.

- Q{g):} Constraint Network ﬂ

Acquisition

CONACQ.1 (Bessiere et al., 2006, 2017), MODELSEEKER. (Beldiceanu and Simonis, 2012),
BAYESAcQ (Prestwich et al., 2021), COUNT-CP (Kumar et al., 2022),
LANGUAGE-FREE AcQ (Bessiere et al., 2023), etc.
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Which network?

Given a set of examples, there are often many constraint networks
that are consistent with these examples.
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Which network?

Given a set of examples, there are often many constraint networks
that are consistent with these examples.

Which network will generalize best to new, unseen data?
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Learning Compact Representations

Our claim

Learning compact representations of constraint networks is the key to better generalization.
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Learning Compact Representations

Our claim

Learning compact representations of constraint networks is the key to better generalization.

Our Contribution

@ A novel, compact representation for structured networks, which we call template.

Areski HIMEUR Learning Compact Representations of Constraint Networks



Learning Compact Representations

Our claim

Learning compact representations of constraint networks is the key to better generalization.

Our Contribution

@ A novel, compact representation for structured networks, which we call template.

@ A new acquisition framework, TACQ, that learns these templates directly from examples.

Areski HIMEUR Learning Compact Representations of Constraint Networks



Compact Representation
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Example with the Sudoku

(a) Attribute 1 (Rows) (b) Attribute 2 (Columns) (c) Attribute 3 (Squares 3 x 3)

m For each variable (cell), we specify three attributes (¢row, Pcol, and square)-

m We produce all the constraints of Sudoku using rules depending on these attributes.
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What is a Template?

© Attributes: Functions that assign numerical features to variables.

@ Rules: Mechanisms for producing many constraints based on attributes. It consists of:
> A Relation for the constraint (e.g., #),
» A Selector that specifies which attributes to check,
» A Trigger function that determines if the constraint should be produced based on the
selected attributes.
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Template Example: Sudoku

A Concise Representation for Sudoku

Variables: Rules :
m 81 variables : x;; @ Row Rule:
Apply '#" to (xu, xv) if drow(Xu) = Prow(Xv)-
Attributes: @ Column Rule:
m drow(Xij) = i Apply ‘#' to (Xu, Xv) if Peol(Xu) = Peol(Xv)-

© Square Rule:

. ¢C0I(Xi7j) —J App|y ‘?é' to (XUaXv) if ¢square(xu) = ¢square(xv)-

u Qbsquare(xiaj) = {éJ X3+ {%J
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Learning Algorithm
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The TAcqQ Learning Framework

A Two-Step Process:
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The TAcqQ Learning Framework

A Two-Step Process:

@ Learn Initial Network: Use a baseline method to learn an initial network N that is
consistent with the training examples.
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The TAcqQ Learning Framework

A Two-Step Process:

@ Learn Initial Network: Use a baseline method to learn an initial network N that is
consistent with the training examples.

@ Refine into a Template: Learn a compact template T whose interpretation is a large
subset of M.
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The Template Learning Algorithm

Algorithm Sketch

Input: A training set E and an initial network N consistent with E.

Output: A template T consistent with E.
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The Template Learning Algorithm

Algorithm Sketch

Input: A training set E and an initial network N consistent with E.
Output: A template T consistent with E.

@ Start with an empty template T.
@ While the template T is not consistent with the training set E:

@ Guess new attribute.
@ Greedily add rules that produce many new constraints of N.
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The Template Learning Algorithm

Algorithm Sketch

Input: A training set E and an initial network N consistent with E.
Output: A template T consistent with E.

@ Start with an empty template T.
@ While the template T is not consistent with the training set E:

@ Guess new attribute.
@ Greedily add rules that produce many new constraints of N.

A key contribution is the heuristic which determines the width of new attributes.
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Experimental Evaluation
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Higher Accuracy / Fewer Examples

Problem Examples for 100% accuracy | Reduction
LFA LFA+TACQ
Sudoku 120 80 33%
Jigsaw [3 instances] 1490 1130 24%
Nurse Rostering [3 instances] 720 590 18%
Exam Timetabling [3 instances] 2536 919 64%
Schur's Lemma 560 560 0%
Subgraph Isomorphism 640 640 0%
Golomb Ruler (10 variables) 2100 2100 0%

Table: Number of examples to reach 100% accuracy.
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Results: Learning Interpretable Attributes

|
TAcQ learns attributes corresponding to meaningful features.
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Results: Learning Interpretable Attributes

TAcQ learns attributes corresponding to meaningful features.

0 0 0 ) 0 0 0 ) 0

(b) Attribute 2 (¢2)

Figure: Illustration of the three attributes learned by TAcqQ for Sudoku.
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Conclusion

SCYRELCEENS

m Template is a representation of constraint networks in a compact and structured form,
m TAcQ is a framework that learns Templates from examples,

m TAcq significantly reduces the number of examples needed to learn an accurate
model for structured problems,

m The learned templates are often interpretable.

Future Work: Investigate learning parameterized models.
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Thank you for your time and attention.
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