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Background

A constraint network:
a set of variables over a finite domain

a set of constraints, i.e. relations between
variables that must be satisfied in any
solution

x : {1, 2, 3} y : {1, 2, 3} z : {1, 2, 3}

x + y + z = 7

x ≤ y y ≤ z

Constraint programming is an expressive, flexible, efficient paradigm for solving problems.

Challenge: The modeling process is a significant bottleneck
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The Solution: Constraint Acquisition

Passive Constraint Acquisition

Instance: Set of examples (assignments labelled as solutions and non-solutions).
Goal: Find a constraint network consistent with the examples.

ConAcq.1 (Bessiere et al., 2006, 2017), ModelSeeker (Beldiceanu and Simonis, 2012),
BayesAcq (Prestwich et al., 2021), Count-CP (Kumar et al., 2022),

Language-Free Acq (Bessiere et al., 2023), etc.
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Which network?

Given a set of examples, there are often many constraint networks
that are consistent with these examples.

Which network will generalize best to new, unseen data?

Areski HIMEUR Learning Compact Representations of Constraint Networks 3 / 15



Which network?

Given a set of examples, there are often many constraint networks
that are consistent with these examples.

Which network will generalize best to new, unseen data?

Areski HIMEUR Learning Compact Representations of Constraint Networks 3 / 15



Learning Compact Representations

Our claim
Learning compact representations of constraint networks is the key to better generalization.

Our Contribution
1 A novel, compact representation for structured networks, which we call template.
2 A new acquisition framework, TAcq, that learns these templates directly from examples.
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Compact Representation
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Example with the Sudoku

For each variable (cell), we specify three attributes (ϕrow, ϕcol, and ϕsquare).
We produce all the constraints of Sudoku using rules depending on these attributes.
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What is a Template?

1 Attributes: Functions that assign numerical features to variables.

2 Rules: Mechanisms for producing many constraints based on attributes. It consists of:
▶ A Relation for the constraint (e.g., ̸=),
▶ A Selector that specifies which attributes to check,
▶ A Trigger function that determines if the constraint should be produced based on the

selected attributes.
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Template Example: Sudoku

A Concise Representation for Sudoku

Variables:
81 variables : xi ,j

Attributes:
ϕrow(xi ,j) = i
ϕcol(xi ,j) = j
ϕsquare(xi ,j) =

⌊
i
3

⌋
× 3 +

⌊
j
3

⌋

Rules :
1 Row Rule:

Apply ‘ ̸=’ to (xu, xv ) if ϕrow(xu) = ϕrow(xv ).
2 Column Rule:

Apply ‘ ̸=’ to (xu, xv ) if ϕcol(xu) = ϕcol(xv ).
3 Square Rule:

Apply ‘ ̸=’ to (xu, xv ) if ϕsquare(xu) = ϕsquare(xv ).
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Learning Algorithm
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The TAcq Learning Framework

A Two-Step Process:

1 Learn Initial Network: Use a baseline method to learn an initial network N that is
consistent with the training examples.

2 Refine into a Template: Learn a compact template T whose interpretation is a large
subset of N.
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The Template Learning Algorithm

Algorithm Sketch

Input: A training set E and an initial network N consistent with E .
Output: A template T consistent with E .

1 Start with an empty template T .
2 While the template T is not consistent with the training set E :

1 Guess new attribute.
2 Greedily add rules that produce many new constraints of N.

A key contribution is the heuristic which determines the width of new attributes.
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Experimental Evaluation
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Higher Accuracy / Fewer Examples

Problem Examples for 100% accuracy Reduction
LFA LFA+TAcq

Sudoku 120 80 33%
Jigsaw [3 instances] 1490 1130 24%
Nurse Rostering [3 instances] 720 590 18%
Exam Timetabling [3 instances] 2536 919 64%
Schur’s Lemma 560 560 0%
Subgraph Isomorphism 640 640 0%
Golomb Ruler (10 variables) 2100 2100 0%

Table: Number of examples to reach 100% accuracy.
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Results: Learning Interpretable Attributes

TAcq learns attributes corresponding to meaningful features.

Figure: Illustration of the three attributes learned by TAcq for Sudoku.
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Conclusion

Key Takeaways

Template is a representation of constraint networks in a compact and structured form,
TAcq is a framework that learns Templates from examples,
TAcq significantly reduces the number of examples needed to learn an accurate
model for structured problems,
The learned templates are often interpretable.

Future Work: Investigate learning parameterized models.
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Thank you for your time and attention.

Work supported by EU Horizon 2020 TAILOR (GA N° 952215),
ANITI (GA N° ANR-19-PI3A-0004) and ANR AXIAUM (GA N° ANR-20-THIA-0005-01)
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