THESE POUR OBTENIR LE GRADE DE DOCTEUR
DE L'UNIVERSITE DE MONTPELLIER

En Informatique
Ecole Doctorale : Information, Structures et Systémes (I2S)

Unité de Recherche : Laboratoire d’informatique, de Robotique
et de Microélectronique de Montpellier (LIRMM)

Reducing Dependency on Prior Knowledge
in Constraint Acquisition

Présentée par Areski HIMEUR
le 03 décembre 2025

Sous la direction de Christian BESSIERE
Co-encadré par Clément CARBONNEL

Devant le jury composé de

Gilles AUDEMARD, Professeur des universités, Université d’Artois - CRIL Rapporteur

Christian BESSIERE, Directeur de recherche, CNRS Directeur de thése
Clément CARBONNEL, Chargé de recherche, CNRS Co-encadrant de thése
Florence DUPIN DE SAINT-CYR, Maitresse de conférences, Université de Toulouse - IRIT Examinatrice

Simon de GIVRY, Chargé de recherche, MIAT - INRAE Toulouse Rapporteur
Marie-José HUGUET, Professeure des universités, INSA Toulouse - LAAS-CNRS Présidente

UNIVERSITE oe
MONTPELLIER

Remerciements

Je tiens a exprimer ma profonde gratitude a toutes les personnes qui ont contribué,
de pres ou de loin, a la réalisation de cette these. Je remercie tout d’abord mon
directeur de these, Christian Bessiere, pour son encadrement exceptionnel. Sa rigueur
scientifique et son enthousiasme pour la recherche ont été une source d’inspiration
profonde. Je suis également reconnaissant envers mon second encadrant, Clément
Carbonnel, pour ses précieux conseils, son soutien constant et pour m’avoir poussé a

toujours donner le meilleur de moi-méme.

J’adresse ma sincére reconnaissance aux membres de mon jury, Gilles Audemard,
Florence Dupin de Saint-Cyr, Simon de Givry et Marie-José Huguet, d’avoir accepté
d’évaluer mon travail. Je remercie tout particulierement Gilles Audemard et Simon
de Givry pour leurs rapports détaillés et pertinents qui ont contribué a l'amélioration
de cette thése. Je remercie aussi l’ensemble du jury d’avoir fait le déplacement pour

la soutenance et pour les discussions enrichissantes qui ont suivi.

Je remercie chaleureusement mes colléques et amis du laboratoire et de l'université,
pour les discussions stimulantes et [’ambiance conviviale qui ont rendu cette expérience
encore plus enrichissante autant scientifiguement qu’humainement. Je sais que cette

thése n’aurait pas été la méme sans vous.

Merci a ma mére, mon pere, mes seurs et mon frere pour leur amour, leur
soutien inconditionnel et leurs encouragements. Je sais que sans vous, je n’aurais
jamais pu accomplir cela. J'aimerais aussi exprimer ma reconnaissance a tous mes
amis proches, pour avoir toujours cru en moi et m’avoir soutenu dans les moments
difficiles. Enfin, je remercie du fond du ceeur Paula, ma compagne, qui a partagé
ma vie durant toute cette aventure, pour son amour, sa patience et son soutien
indéfectible tout au long de ces années. Ta présence est pour moi une source de

motivation inestimable pour laquelle je ne saurais jamais assez te remercier.

Abstract

Constraint programming is a powerful paradigm for solving complex combinatorial
problems. However, its adoption is often hindered by the modeling challenge that
requires both domain expertise and a deep understanding of the constraint program-
ming paradigm. Constraint acquisition aims to automate this modeling process by
learning constraints from data. In particular, passive constraint acquisition focuses

on learning from a provided batch of examples.

Current passive constraint acquisition methods, however, face two significant
limitations that restrict their practical use. First, they require the user to provide a
large dataset of examples. Second, they presuppose the user has prior knowledge
about the problem, such as a list of potential constraints or a grammar to express
them. This dissertation addresses these fundamental limitations by proposing novel
passive constraint acquisition methods that operate without any prior knowledge and
with a minimum of examples, while producing models that tend to be interpretable

and to generalize well to unseen data.

1ii

Résumé en francais

French Summary

La Programmation Par Contraintes (PPC) est un paradigme puissant pour
résoudre des problemes combinatoires complexes, trouvant des applications dans des
domaines variés. Un de ses atouts majeurs est la séparation entre la modélisation du
probleme (la définition d’un ensemble de variables et de contraintes) et sa résolution
(la recherche de solutions par un solveur générique). Cependant, cette phase de
modélisation constitue souvent un obstacle majeur pour 'utilisation de la PPC.
Elle requiert une double expertise : une connaissance approfondie du domaine du
probleme a modéliser et une maitrise des concepts de la PPC pour formuler des

contraintes pertinentes. Cet obstacle limite 'adoption de la PPC par des non-experts.

Pour surmonter cette difficulté, le domaine de I’acquisition de contraintes a émergé.
Son objectif est d’automatiser le processus de modélisation en apprenant un réseau
de contraintes directement a partir de données, souvent des exemples de solutions
(assignations de valeurs aux variables qui devront satisfaire ’ensemble des contraintes
cibles) et de non-solutions (assignations qui ne devront pas satisfaire I’ensemble des
contraintes cibles). Néanmoins, la plupart des méthodes d’acquisition de contraintes
existantes souffrent d’une limitation majeure : elles exigent des connaissances préa-
lables sur la structure du probleme a apprendre. L'utilisateur doit fournir, en plus
des exemples, un ensemble de contraintes candidates potentielles ou un langage de
contraintes fixe (une grammaire) dans lequel le modele final doit étre exprimé. Cette
exigence réintroduit une barriere et rend ces méthodes difficilement applicables dans
des scénarios oul cette connaissance est absente, par exemple lorsqu’on apprend d’une
base de données de solutions précédemment validées ou d’un classifieur “boite noire”

comme un réseau de neurones.

La présente these s’attaque a ce verrou en proposant des méthodes d’acquisition

de contraintes qui réduisent progressivement la dépendance aux connaissances a

priori, avec pour objectif de rendre le processus plus autonome et plus généralisable

a de nouvelles données.

La premiere contribution de cette these est une nouvelle méthode d’acquisition
de contraintes, nommée LFA, qui élimine la nécessité de fournir un langage de
contraintes prédéfini. L’idée centrale est d’apprendre simultanément le réseau de
contraintes et un langage adéquat pour I'exprimer. Pour éviter de générer des langages
arbitrairement complexes et de ne pas obtenir un modele surajusté aux données
d’entrainement, notre approche est guidée par un principe de simplicité : elle cherche
le langage le plus simple capable d’expliquer les exemples fournis. La simplicité est
ici définie en termes de I'arité maximale des relations et du nombre total de relations

dans le langage.

Nous avons formalisé ce probléme et prouvé qu’il est NP-complet. Pour le résoudre
en pratique, nous avons développé un algorithme qui explore les langages par ordre
de complexité croissante et utilise un modele de satisfiabilité maximale pondérée
pour trouver, pour un langage donné, un réseau de contraintes cohérent avec les
exemples (un réseau ou chaque exemple de solution satisfait 'ensemble des contraintes,
tandis que chaque exemple de non-solution en viole au moins une). Les évaluations
expérimentales sur un large éventail de problemes de référence (Sudoku, Jigsaw
Sudoku, Planning d’Infirmieres, etc.) démontrent que LFA est capable d’apprendre
des réseaux de contraintes qui représentent le probléme a modéliser sans aucune
connaissance préalable du langage cible, constituant ainsi une avancée significative

vers une acquisition de contraintes entierement automatisée.

Bien que la méthode LFA résolve le probleme de la dépendance a un langage
prédéfini, nous avons également identifié une piste d’amélioration. LFA apprend une
simple liste de portées de contraintes (les séquences de variables sur lesquelles les
contraintes s’appliquent). La méthode peine ainsi a capturer la structure sous-jacente
qui régit 'application de ces contraintes. Par exemple, dans un Sudoku, les contraintes
de différence s’appliquent systématiquement a toutes les paires de cases d’'une méme
ligne. LFA doit apprendre chacune de ces contraintes individuellement, ce qui peut
nécessiter un grand nombre d’exemples pour éliminer les contraintes parasites et

peut nuire a la généralisation.

Pour répondre a cette limite, notre seconde contribution consiste dans un premier
temps a introduire une nouvelle représentation des réseaux de contraintes, que nous

appelons templates. Un template est une structure qui capture la relation entre les

vi

variables et les contraintes de maniere plus compacte et interprétable. Il se compose

de deux éléments :

e Des attributs associés aux variables, qui capturent leurs propriétés structurelles

par exemple, un attribut “ligne” et un attribut “colonne” pour chaque case du
g
Sudoku).

o Des régles qui géneérent des contraintes en se basant sur ces attributs (par
exemple, une regle stipulant : “appliquer la contrainte de différence a toute

paire de variables partageant la méme valeur pour Iattribut ‘ligne’”).

Avec cette nouvelle représentation, nous proposons une méthode d’acquisition
de contraintes, nommée TACQ, qui apprend des templates a partir d’exemples.
L’originalité de TAcQ est qu’elle apprend non seulement les régles, mais aussi les
attributs pertinents directement a partir des données, sans qu’ils soient fournis
a priori. L’algorithme fonctionne comme une étape de raffinement : il prend en
entrée un réseau de contraintes initial (par exemple, celui appris par LFA) et
cherche un template permettant de représenter un large nombre de ses contraintes
avec un template ayant peu d’attributs et de regles. Ce template, en capturant la
structure intrinseque du probleme, favorise une meilleure généralisation et réduit
drastiquement le nombre d’exemples nécessaires pour atteindre une haute précision.
Nos expériences montrent que, pour de nombreux problémes structurés (Sudoku,
Planning d’'Infirmiéres, Emploi du Temps d’examens, etc.), TAcQ surpasse LFA
en termes de précision, tout en produisant des modeles plus interprétables sans

nécessiter de connaissances préalables, excepté les exemples.

Ensemble, ces contributions tracent une voie vers une acquisition de contraintes
plus autonome. En levant d’abord la nécessité d’un langage de contraintes prédéfini,
puis en introduisant un formalisme capable de capturer la structure inhérente des
problemes, cette these rend 'apprentissage de modeles de contraintes plus accessible et
plus robuste. Nous présentons également des perspectives sur 'utilisation de réseaux
de neurones convolutifs (CNN) comme oracles pour 'acquisition de contraintes. En
exploitant les techniques d’explicabilité, nous envisageons d’exploiter de nouvelles
données que les CNN peuvent fournir pour guider 'extraction de contraintes. Cette
approche ouvre la voie a une nouvelle direction d’apprentissage de contraintes a partir
de données non structurées, en utilisant des modeles d’apprentissage automatique

comme sources de données.

vii

Contents

1 Introduction

2 Background

2.1 Constraint Programming and Satisfiability

2.2

3 Constraint Acquisition

3.1
3.2
3.3
3.4

4.1
4.2
4.3

2.1.1 Constraint Programming
2.1.2 Boolean Satisfiability
Concept Learning
2.2.1 Concept Learning Task

2.2.2 Generalization to Unseen Assignments

Oracle and Training Set

Version Space

Constraint Acquisition

Overview of Constraint Acquisition Methods

Learning over Unknown Constraint Languages

Introduction

Language Acquisition

The Method

4.3.1 Overview

4.3.2 The Model

ix

CONTENTS

4.4 Experimental Evaluationo 34
4.4.1 Implementation L. 34

4.4.2 Benchmark Problems 35
4.4.3 Network and Language Acquisition 39
4.4.4 Detailed Analysis on the Sudoku Problem 44

4.5 Limitations and Perspectives o1
4.5.1 Lack of Structure 51
4.5.2 Interpretability of the Language 52

4.6 Conclusion 53
5 Learning Compact Representations of the Scopes 55
5.1 Introduction 56
5.2 Compact Representations 58
5.3 Learning Templates L L 62
5.3.1 Overview 62

5.3.2 The Procedure SaturateWithNewRules 63
5.3.3 The Procedure GuessAttributeWidth 64
5.3.4 Termination, Correctness and Complexity 66

54 The Model 70
5.5 Experimental Evaluation 75
5.5.1 Implementation 75

5.5.2 Benchmark Problems 76
5.5.3 Accuracy and Equivalence 78
5.5.4 Learned Attributes 81

5.6 Perspectives 86
5.6.1 Generalization to Other Instances 86
5.6.2 Better Interpretability 0. 87

5.7 Conclusion 88

CONTENTS

6 Perspectives on CNNs as Oracles 91
6.1 Introduction 92
6.2 Convolutional Neural Networks 94
6.3 CNNsasOracles 98
6.4 Use of Explainability Techniques 100
6.5 Conclusion L 104
7 Conclusion 105
7.1 Summary of Contributions 105
7.2 Perspectives 106

X1

Chapter 1

Introduction

Constraint programming is a powerful paradigm for solving complex combinatorial
problems. It separates the modeling of the problem, expressed as a set of constraints,
from the solving process. This separation allows for greater flexibility and adaptability,
as the same solving techniques can be applied to different problems. However, the
task of modeling a problem may require significant expertise in the field of the

problem, as well as a deep understanding of the constraint programming paradigm.

A user of constraint programming must be able to identify the relevant constraints,
express them in a suitable formalism, and ensure that the resulting model accurately
captures the requirements of the problem. This often involves a steep learning curve
and can be a significant bottleneck to entry for non-experts or those unfamiliar with
constraint programming techniques. As a result, many potential users of constraint
programming may find it challenging to effectively model their problems, leading to

underutilization of this powerful approach in practice.

To address this modeling bottleneck, the field of constraint acquisition has
emerged, and it consists in automatically learning a set of constraints that represent
a given problem from data. However, two significant challenges limit its practical use.
First, current methods often require the user to provide a large dataset of examples.
Second, they presuppose the user has prior knowledge of the problem, such as a list
of potential constraints or a grammar to express them. Assuming that the user has
such prior knowledge is a major limitation, as this requirement may not always be
realistic. This limitation is even greater in scenarios involving non-human sources of
examples, like a database or a neural network, which may not have any attached

background knowledge about the problem to learn.

The central problem tackled in this thesis is how to enable a constraint acquisition
method to learn the constraints of a problem without any prior knowledge and with
a minimum of examples, while producing models that tend to be interpretable and
to generalize well to unseen data. In particular, we focus on passive constraint

acquisition, where we learn from a provided batch of examples, without interaction.

To overcome the limitations of prior work, our contributions are based on the idea
of promoting simplicity and compactness to learn constraint networks that generalize
well to unseen data. This finally leads us to discuss the possibility of using constraint
acquisition with non-traditional data sources rather than a human. In such scenarios,
we can exploit new types of data that, for instance, a convolutional neural network

with the help of explainability techniques, can provide to learn a constraint network.

Chapter 1. Introduction

Outline of the Thesis

Chapter 2: Background. This chapter presents the necessary context with an
overview of constraint optimization (covering key concepts in constraint programming

and Boolean satisfiability) and concept learning.

Chapter 3: Constraint Acquisition. This chapter presents the constraint
acquisition problems and a short survey of some constraint acquisition methods. We

highlight their limitations, setting the stage for our contributions.

Chapter 4: Language-Free Constraint Acquisition. This chapter presents
our first contribution, a novel acquisition method named LFA that removes the need
for prior knowledge of the constraint language. Our approach computes a suitable
language as part of the learning process.

Learning Constraint Networks over Unknown Constraint Languages —
[JCAI 2023 [6] and Apprendre un CSP sans connaitre son langage (French extended
abstract) — JEPC-2024 [7].

All the data and code used in this chapter are available at github.com/
hareski/language-free-acq. The method is implemented in the Python languageFreeAcq

package, which can be installed with pip install languageFreeAcq.

Chapter 5: Learning Compact Representations of the Scopes. This chapter
introduces a new compact representation of constraint networks called a template,
which consists of attributes for variables and rules that generate constraints based
on them. We then present the TAcqQ framework, a two-step pipeline that uses LFA
to generate an initial network and then refines it into a template.

This chapter is based on the conference paper Learning Compact Repre-
sentations of Constraint Networks accepted for publication at ECAT 2025 (to appear).

All the data and code used in this chapter are available at github.com/
hareski/tacq. The method is implemented in the Python TAcq package, which can

be installed via pip install tacgq.

Chapter 6: Perspectives on CNNs as Oracles. This chapter explores the
potential of using convolutional neural networks (CNNs) as a source of examples
for constraint acquisition. We discuss how explainability techniques may be used to

guide the extraction of constraints from CNNs.

github.com/hareski/language-free-acq
github.com/hareski/language-free-acq
github.com/hareski/tacq
github.com/hareski/tacq

Chapter 7: Conclusion. This chapter concludes the manuscript by summarizing

the key contributions and outlining promising directions for future research.

Chapter 2
Background

This chapter provides the necessary background for understanding the methods and
concepts presented in this thesis. We will cover the topics of constraint optimization
with constraint programming and Boolean satisfiability in Section 2.1 and then

present the domain of concept learning in Section 2.2.

2.1 Constraint Programming and Satisfiability

We present in this section two main approaches relevant to this thesis: constraint
programming, which is a powerful paradigm for solving CSPs, and Boolean satisfia-
bility, a specialized but highly efficient case. We do not present all the approaches
to constrained optimization; in particular, we omit other approaches such as linear

programming and integer programming.

2.1.1 Constraint Programming

Constraint programming is a programming paradigm that splits the modeling part,
where the problem is expressed as a constraint network, and the solving part, where
a solution is found using a general-purpose solver. This approach, which splits the
modeling phase from the solving phase, constitutes a fundamental characteristic of
constraint programming and establishes it as a declarative programming paradigm.
The focus is on defining the problem in terms of constraints rather than specifying
how to solve it. Then, the solver leverages sophisticated techniques such as constraint

propagation, backtracking, and heuristics to efficiently explore the solution space.

2.1. Constraint Programming and Satisfiability

The initial works on constraint networks were introduced in [30] in 1974 and
focused on binary constraints, which are defined on pairs of variables only. However,
we consider the general case where constraints can be defined on sets of variables of

arbitrary size.

Let us consider a fixed set of variables X = {z1,z,...,2,} and a finite domain
D = {dy,dy,...,d,}, where each variable x; can take any value from the domain
D. A relation R of arity r over the domain D is a subset of D". We say that R
accepts a tuple 7 € D" if 7 € R, and that R rejects a tuple 7 € D" if 7 ¢ R. While
this definition is formal, in practice, many relations are defined intentionally by a
property or predicate, rather than being explicitly listed as a set of tuples (e.g. the
binary inequality relation R. defined as the set of pairs of distinct elements for any
domain D).

A constraint over (X, D) is defined as a pair (R, S) where R is a relation of arity
rover D (i.e., R C D") and S is a sequence of r variables from X, referred to as the
scope of the constraint. An assignment o : X — D satisfies a constraint (R, S) if

a[S] € R; conversely, the assignment violates the constraint if «[S] ¢ R.

Definition 1 (Constraint network). A constraint network is a tuple N = (X, D, C'),
where X is a set of variables, D is a finite domain, and C' is a set of constraints
over (X, D).

A constraint network N = (X, D, C) accepts an assignment o : X — D if and
only if « satisfies all constraints in C'; N rejects it otherwise. An assignment that
is accepted by N is called a solution to the constraint network. Conversely, an
assignment that violates any constraint in C' is a non-solution. Given a constraint
network N = (X, D, ('), we say that a relation R is applied to a sequence of variables
S if there exists a constraint (R, S) in C. Two constraint networks are equivalent if

they have exactly the same set of solutions.

Definition 2 (Constraint Satisfaction Problem (CSP)). Given a constraint network
N = (X, D, C), the Constraint Satisfaction Problem (CSP) is the task of determining

whether a solution to N exists.

Solving a constraint network consists in finding an assignment that is a solution

to the network or proving that no such assignment exists. To solve a constraint

Chapter 2. Background

network, we employ a constraint solver, a specialized program designed to implement

general-purpose algorithms for solving a constraint network.

Example 2.1.1 (Nurse Rostering as a Constraint Network). The Nurse Roster-
ing problem is a classic example of a combinatorial optimization problem where
constraint programming is effective. The goal of the Nurse Rostering problem is
to create a work schedule, assigning a set of nurses to shifts over a given period
(e.g., a week). A wvalid schedule must respect a set of rules that depend on the
specific requirements of the schedule. For example, let us consider the following

simple set of rules:

e Rule 1: Each shift must be covered by exactly one nurse.

o Rule 2: A nurse cannot be assigned to two different shifts on the same day.

e Rule 3: A nurse cannot work the last shift of a day and the first shift of
the next day.

To translate this specific problem into a constraint network, we must define
its three components: the variables, their domains, and the constraints. Let us

assume an instance with d days, s shifts per day, and n nurses.

Variables (X): A natural way to model the problem is to define a variable
for each assignment to be made. We create a variable z; ; to represent the nurse
assigned to shift j on day i. The set of all variables is X = {z;; |i € [1,d],j €

[1,s]}.

Domain (D): The domain of each variable is the set of possible values it
can take. In this case, it is the set of available nurses. We can represent them
with integers: D = {1,2,...,n}.

The fact that each shift (i,j) is represented by a unique variable x; ; that
must take a single value from the domain D implicitly ensures that each shift
will be covered by exactly one nurse (Rule 1). This highlights that some choices
of representation have an impact on the constraints that need to be defined. We

now translate the remaining rules into constraints.

2.1. Constraint Programming and Satisfiability

Constraints (C):

e Rule 2: To ensure that a nurse does not work two different shifts on the
same day, we must state that for any given day i, the values of the variables
z;j and x;y (with j # k) must be different. Using the binary disequality

relation R, we can add the following set of constraints to C':
{(Re, (i, zik)) | 1 € [1,d], 5,k € [1,5],5 # k}

o Rule 3: To ensure that a nurse cannot work the last shift of a day and the

first shift of the next day, we can add the following set of constraints to C':
{(Ry, (i, Tig11)) |7 € [1,d — 1]}

The constraint network N = (X, D, C) can be produced with fixed parameters
(d,s,n) of a specific instance of the Nurse Rostering problem. An assignment
a: X — D that is a solution of N represents a valid schedule that adheres to
all the stated rules.

There are no general limitations on the types of constraints that can be defined
in a constraint network. However, some constraints are more commonly used than
others, such as binary arithmetical constraints defined on pairs of variables (e.g.
equality, inequality, comparison) or constraints such as ALLDIFFERENT which ensures
that all variables in a set take different values, and NOTALLEQUAL which ensures
that at least two variables in a set take different values. The relations that are used
to define the constraints in a constraint network can be of various types and are

referred to as the constraint language of the network.

Definition 3 (Constraint language). A constraint language T" is a set of relations

over a finite domain.

A constraint network N is said to be over the constraint language I' if every
relation R in the constraints of N belongs to I'. The arity of a constraint language

is defined as the maximum arity among all relations contained in T'.

Chapter 2. Background

2.1.2 Boolean Satisfiability

Boolean satisfiability (SAT) is a fundamental problem in computer science and logic,
where the goal is to determine whether there exists an assignment of truth values to
a set of Boolean variables such that a given Boolean formula evaluates to True. Its
central importance in computational complexity was established in the seminal work
of Stephen Cook, who proved it was the first problem shown to be NP-complete [13].
Beyond its theoretical importance as the canonical NP-complete problem, SAT has

found widespread practical applications across numerous domains.

Let us first introduce the necessary terminology to formalize the SAT problem.
A literal is either a Boolean variable x or its negation —z. To facilitate notation
during the manuscript, we extend the domain of a truth assignment « to literals.
Specifically, for any variable and its negation -z, we define o(—z) = —a(x). The

notation a(l) denotes the truth value assigned to literal [under the assignment «.

A clause is a disjunction (logical OR) of literals, typically written as [y VIy V- - -V
where each [; is a literal. A clause is satisfied by a truth assignment « if at least
one of its literals evaluates to True under that assignment. Given an assignment «
and a clause C;, we denote a(C;) the truth value assigned to clause C; under the
assignment «, i.e. a(C;) = True if and only if at least one literal in C; is assigned

True by a.

Definition 4 (Boolean Satisfiability Problem (SAT)). Given a finite set of clauses
CL = {C1,Cs,...,C} over a set of Boolean variables X = {x1,xs,...,2,}, the
SAT problem asks whether there exists a truth assignment o : X — {True,False}
such that a(C;) = True for every clause C; € CL.

The SAT problem can be viewed as a special case of constraint networks where
all the variables are Boolean variables (i.e. the domain is restricted to {1,0}) and
the constraint language consists exclusively of Boolean clauses. However, all these
limitations allow us to use specific and efficient algorithms to solve the problem, such
as the DPLL algorithm [16] and its modern variants like CDCL (Conflict-Driven
Clause Learning) solvers [38]. Modern SAT solvers are capable of handling instances
with millions of variables and clauses. This leads us to consider SAT as an interesting

way to model and solve some combinatorial problems we will encounter in this thesis.

In Chapter 4 of this thesis, we will more specifically use the WEIGHTED PARTIAL

MAX-SAT problem, a generalization of SAT, where some clauses must be satisfied

2.2. Concept Learning

(hard clauses) and others can be satisfied or not (soft clauses). The goal is to satisfy

all hard clauses while maximizing the sum of the weights of satisfied soft clauses.

Definition 5 (Weighted Partial Maximum Satisfiability Problem (WEIGHTED
PARTIAL MAX-SAT)). Given a set of hard clauses CLg and a set of soft clauses
CLg, where each clause ¢; in C'Lg has a weight w;, the WEIGHTED PARTIAL MAX-
SAT problem asks for a truth assignment « that satisfies all clauses in C'Ly and

maximizes the sum of weights of satisfied clauses in C'Lg.

2.2 Concept Learning

2.2.1 Concept Learning Task

Definition 6 (Concept). Given a set of variables X and a finite domain D, a
concept is a function ¢ : DX — {0,1}.

A concept class is a set of concepts. The output of a concept is often interpreted
as a classification label, where 1 indicates that the assignment belongs to the positive

class and 0 indicates that it belongs to the negative class.

One may notice that the definition of concept and concept class does not specify
how the function or the set must be described or represented. There are various
formalisms that can be used to represent concepts, such as decision trees, logical
formulas, or neural networks. An example of a possible representation for a concept is
a constraint network. The concept is defined by a constraint network N = (X, D, (),
where X is a set of variables, D is a finite domain, and C' is a set of constraints over
the variables in X. Any assignment o € DX can be evaluated by checking whether
the assignment satisfies all constraints in C. If it does, we output 1 (positive);
otherwise, we output 0 (negative). Following this idea, a way to describe a concept
class could be to specify all the constraints that can be used in the constraint network

that describes a concept in the class.

Given a set of variables X and a finite domain D, an ezample e over (X, D) is
an assignment a € D along with a label b € {0,1}. The label indicates whether
it belongs to the positive class (1) or the negative class (0). We denote «(e) the

assignment of the example e and b(e) its label.

10

Chapter 2. Background

Definition 7 (Training Set). A training set E is a finite set of examples.

We say that the training set E is drawn from a distribution D over the assignments
of X if the assignments in E are drawn from the distribution D. We say that a concept
c is consistent with a training set E' if, for all assignments e € E, c(a(e)) = b(e). In
other words, a concept is consistent with a training set if it classifies all examples in

the training set as they are labeled.

The concept learning task [29] consists in inferring a concept from a training set.
Typically, a concept learning task can be described by a concept class H called the
hypothesis space, and a training set F with the goal of finding a hypothesis h € H
consistent with E. To define a concept learning task as a formal problem, we must
specify an encoding for the concept class H. For example, the concept learning
problem formally defined in Chapter 1 of [28] takes as input a language to describe a
concept and a procedure that matches concept descriptions to (consistent) training
sets (these two first inputs define the hypothesis space) and a training set E. The
goal is to find a concept description within the given language that is consistent with
the provided training set (i.e. the procedure matches this description with E). An
algorithm that solves a concept learning problem is called a learning algorithm. A
concept learning task is often related to a classification task, where the goal is to

assign labels to assignments based on the learned concept.

Example 2.2.1 (A Simple Concept Learning Task). Let X = {x, 29, 23},
D ={0,1} and a training set E with the following examples:

e e : {(x1,1),(29,0), (z3,0)} with label 1
o ey {(x1,0), (x9,1), (x3,0)} with label 1
o e3:{(21,0), (22,0), (z3,1)} with label O

Let the concept class H of all concepts such that each concept h has a
representation as a unique binary clause over the variables X and such that
h(«) =1 if and only if o satisfies the clause (the concept returns the truth value

(0 or 1) of the clause over the assignment «).

Consider the concept learning task of finding a hypothesis h € H that is
consistent with the training set E. A possible representation using a clause of
a concept in H that is consistent with the training set E is the clause x1 V x».

But the training set E does not allow us to uniquely determine a clause. In fact,

11

2.2. Concept Learning

there are multiple concepts in H that are consistent with the training set. For
example, the concept of x1V —x3 also represents a concept that is consistent with

the training set.

As illustrates in the example above, given a specific concept learning task, the

training set may not be sufficient to uniquely determine a concept.

2.2.2 Generalization to Unseen Assignments

It is important to note that while the concept learning task is often to determine
a hypothesis h that is consistent with the training set F, other criteria may also
be important. Generally, the hypothesis should ideally match a target concept c,
the underlying concept ¢ that has generated the training set. However, this target

concept is unknown. The learning algorithm only has access to the training set.

An underlying goal of a concept learning task is, therefore, often to find a concept
that generalizes well to unseen assignments (i.e. that classifies new assignments as
the target concept does). This is often referred to as the generalization ability of
a learning algorithm. Since not all assignments are equally important for a given
classification task, the generalization ability is measured by the error of the concept
under a fixed distribution D over the assignments of X. The error of a concept h
with respect to a target concept ¢ and a distribution D is defined as the probability

that the concept misclassifies an assignment drawn from the distribution D:

error(h,c,D) = eErD[h(e) # c(e)]

In contrast, the accuracy is defined as the fraction of assignments that are correctly
classified by the concept (accuracy(h, ¢, D) = 1 —error(h, ¢, D)). However, evaluating
the error of a given concept is not straightforward, as it depends on an unknown
target concept and an unknown distribution D. During experimental evaluation, the
error can be approximated by testing the concept on a separate test set drawn from
the same distribution D that the training set E was drawn from. This is based on the
(quite strong but classic in ML [20]) assumption that the training set is representative
of the distribution D that the concept is expected to generalize to. The error is
estimated as the fraction of assignments in the test set that are misclassified by the

concept.

12

Chapter 2. Background

A phenomenon is related to the generalization ability of the learned concept and
can significantly impact the performance of the learning algorithm: overfitting. A
learning algorithm overfits to a training set £/ when it learns a concept that is overly
specific to the particular examples in F, resulting in poor generalization to unseen
assignments. In other words, the learned concept captures the training set too closely

and fails to generalize to new assignments.

In practice, the concept learning process can be subject to noise in the training
set. Noise refers to inconsistencies in the training set that deviate from the unknown
target concept. The presence of noise in training sets exacerbates the overfitting
problem. When training examples contain labeling errors, a perfectly consistent
concept may actually represent the noise rather than the true target concept. In
such cases, allowing some inconsistency with the training set in the learning task
may lead to better generalization performance. A learning algorithm that is able to

determine the target concept despite the noise is said to be robust to noise.

13

Chapter 3

Constraint Acquisition

The modeling of constraint networks is a crucial step in constraint programming. It
involves defining all the constraints to describe a specific problem. This process is
often done manually by experts in constraint programming, who have the knowledge
and experience to define the constraints that capture the problem. However, this
process can be difficult and time-consuming, often requiring expert knowledge both

in constraint programming and the specific problem domain.

To address this challenge, the field of Constraint Acquisition (CA) has emerged,
aiming to automate the modeling of constraint networks. Given data about a problem,
CA methods learn information about how to model the problem using constraints.
In this chapter, we will present the domain of constraint acquisition and its relation
to concept learning. We will then introduce the main approaches to constraint

acquisition and discuss the challenges and limitations of these approaches.

3.1 Oracle and Training Set

While the term “user” is frequently employed in the literature to describe the entity
that supplies data or feedback for constraint acquisition, this terminology may
implicitly suggest a human operator interacting with the system. However, the term
user can be somewhat limiting, as it does not encompass the full range of entities
that might play this role. To address this limitation, we will instead employ the
term oracle to denote the entity that provides data or feedback within the constraint
acquisition context. Additionally, “oracle” is commonly employed in machine learning

to refer to an entity that provides answers or information. The term is quite general

15

3.1. Oracle and Training Set

and can refer to any system that provides information about the problem. Some

examples of oracles include:

e a human expert that can provide solutions and non-solutions to the problem

or answer questions about it;

» some historical data of the problem. For instance, a dataset of assignments

that have been previously proven to be solutions;

o any automated system. For example, a neural network can be used as an oracle
to classify new assignments if we suppose that the neural network has learned

the underlying structure of the problem;

e a simulation or a model of the problem that can provide feedback on the
correctness of assignments. For instance, a simulation of a physical system can
be used to provide feedback on the correctness of assignments representing the

state of a system.

We distinguish between two types of constraint acquisition methods. When the
whole available data is provided in advance, the process is referred to as passive
constraint acquisition. When the data is collected through interaction with the oracle,

it is referred to as active constraint acquisition.

In active constraint acquisition, constraint acquisition methods need to actively
query the oracle to obtain data. In this case, one of the main challenges is to decide
on the queries to ask the oracle in order to learn the model of the target constraint
problem as efficiently as possible. Meanwhile, in passive constraint acquisition, the
complete data available is already given, and the focus is only on exploiting this data.
In this manuscript, we choose to refer to an oracle whether the data is provided
in advance or collected through interaction with it. This maintains a consistent
terminology throughout the text, as the oracle is the entity that provides data or

feedback, regardless of the method used for constraint acquisition.

The oracle can provide various types of data, each leading to different constraint
acquisition approaches. The most common type consists of a training set of examples
as presented in the previous chapter. A constraint network N is said to be consistent
with a training set F if all the assignments of positive examples satisfy all the
constraints of NV, and all the assignments of negative examples violate at least one

constraint of V.

16

Chapter 3. Constraint Acquisition

3.2 Version Space

Constraint acquisition methods do not learn arbitrary constraint networks. Instead,
they operate under assumptions that restrict the search space to a manageable subset
of all possible constraint networks. This restriction is essential to ensure that the
learned constraint network does not overfit to the training set and can generalize
to unseen assignments. Without such assumptions, any training set could trivially
be represented as a constraint network containing a single constraint whose scope
encompasses all variables and whose relation consists solely of the positive examples
in the training set. While this network would achieve perfect consistency with the
training data, it should provide no generalization capability, as it would only accept

the specific assignments present in the training set and reject all others.

The search space can be restricted in various ways. Mainly, one can use a fixed
set of relations (i.e. a constraint language) from which the constraints can be defined.
For instance, the relations can be restricted to some binary arithmetical relations
(e.g. equality, inequality, ...). The search space can also be limited by fixing a
set of candidate scopes (i.e. the variables involved in the constraints) from which
the constraints are defined. For instance, the scopes can be restricted to pairs of
variables that are adjacent in some topological structure (e.g. a grid, a graph, ...).
With these restrictions, a set of candidate constraints C.q,q can be defined, which is
a set of constraints that can be used to build the constraint network. The candidate

constraints are typically defined over a fixed set of variables X and a finite domain
D.

Definition 8 (Version Space). Given a set of variables X, a domain D, a set of
candidate constraints Ceang all over (X, D), and a training set E, the version space
is the set of constraint networks (X, D, C') where C C Ceana that is consistent with
all examples in E and is denoted as VS(E,Ceand)-

The version space VS(E,Ceana), when non-empty, is fundamentally bounded by
two types of constraint networks, delineating the boundaries of consistent hypotheses

within the predefined candidate constraints.

On one hand, there exists a unique most specific network consisting of constraints
denoted as .S, which represents the most restrictive constraint network that remains

consistent with the given training set E. This network (X, D, S) is constructed by

17

3.2. Version Space

taking the conjunction of all individual candidate constraints from C.,,4 that are
satisfied by every assignment of positive example in F. Consequently, the network
(X, D, S) implicitly rejects the maximum possible number of assignments within the
complete variable domain DX (including all assignments of negative examples in E),

while ensuring that all positive examples from E are solutions.

Conversely, the version space also contains one or multiple most general networks
composed of constraints denoted as G, G, ..., GL. These networks represent the
least restrictive, yet still consistent, hypotheses within the candidate constraints. A
network (X, D, G;) is characterized as most general if and only if it is consistent with
the training set, and the removal of any constraint from G; would cause the resulting
network to accept the assignment of at least one negative example. In essence,
these networks are minimal conjunctions of constraints, where each constraint is

indispensable for ensuring consistency with the negative examples.

Candidates
(ef) Cegnd
Positive examples
prune networks
that reject them
S

delimiting S

(e7)
N .eVSis Negative examples
a consistent prune networks
that accept them

delimiting Gl, GQ, e

network

-

Figure 3.1: Illustration of the version space over a set of candidate constraints C.q,q: each
gray cross represents a constraint. The arrow (e') indicates the constraints pruning of
the version space based on information provided by the positive examples. The arrow (e™)
indicates the pruning of the version space based on negative examples (with multiple sets
G1,Ga,...). A consistent network must contain all constraints of at least one most general

networks G1,Go, ...,G, and be a subset of the most specific network S.

As illustrated in Figure 3.1, the version space can be represented using the set

18

Chapter 3. Constraint Acquisition

of constraints in S and the most general networks Gy, G, ..., G. A consistent
constraint network N = (X, D, () € VS(E, Ceana) is a network that is a subset of
the most specific (i.e. C'C S) and contains all the constraints of at least one of the

most general networks (i.e. C' D G; for some 7).

Each network in the version space is a constraint network that is consistent with
the training set. If new examples are provided by the oracle, they are used to prune
the version space. A positive example eliminates all candidate networks that contain
a constraint that would reject the assignment of the positive example. Conversely, a
negative example eliminates all candidate networks that would accept the assignment
of the negative example. The goal of a constraint acquisition algorithm is to reduce
the version space, ideally to a single network, which would then be the learned target
network. If the version space becomes empty, it implies that no network formed from
the candidate constraints can explain the training set, suggesting that the candidate

constraints are insufficiently expressive or that the training set contains noise.

3.3 Constraint Acquisition

The passive constraint acquisition domain was initially presented in [10,12]. Given a
set of candidate constraints C..,q and a training set F, three fundamental problems

can be formulated:

o Version space problem: give a representation of the version space VS(E, Ceana);

o Consistency problem: determine whether there exists a constraint network that

is consistent with the examples (Is V.S(E, Ceang) not empty?);

o Convergence problem: determine whether the version space converges to con-
straint networks all representing the same target concept (i.e. whether the

version space contains only equivalent networks).

The consistency problem can be solved in polynomial time, and the convergence

problem is CoNP-complete [12].

In this manuscript, we consider passive constraint acquisition as a specific concept

learning task. The task consists in inferring a constraint network from a training set.

19

3.4. Overview of Constraint Acquisition Methods

Typically, the candidate constraint networks are limited by a hypothesis space that
is represented by a set of candidate constraints Coq,q (often called the bias), and the

inferred constraint network must be consistent with the training set.

When we evaluate the generalization ability of a learning algorithm for a passive
constraint acquisition task, we will consider that there exists a unique and unknown
(to the learning algorithm) constraint network N* = (X, D, C*) that has been used
to label the training set £. We will refer to it as the target constraint network of the

learning task.

This presentation of the passive constraint acquisition task highlights a central
challenge inherent in concept learning tasks. The training set F is typically only a
small sample of the entire assignment space D¥ and, as a result, is insufficient to
uniquely determine a network consistent with E. This naturally poses a challenge for
the learning process: what is the “best” network to choose from this space? Which

network will generalize best to unseen examples?

Constraint acquisition has been applied in various domains, including automated
program analysis [27] and robotics [31]. Moreover, tools like PYCONA [42] have been
developed to facilitate the use of various constraint acquisition methods. PYCONA is
a Python library based on CPMPY [19], which provides a framework for implementing

and experimenting with different constraint acquisition algorithms.

3.4 Overview of Constraint Acquisition Methods

This section provides an overview of key constraint acquisition methods from the lit-
erature, highlighting their main characteristics. We will also discuss some limitations
of each method.

ConAcq.1 [10,12] CoNAcQ.1 learns from a set E of both positive and negative
examples with a fixed set C\.,q of candidate constraints. It produces a SAT formula
that is a representation of the full version space VS(F,Cenq). Each candidate
constraint is represented by a Boolean variable, and each example is encoded as
a set of clauses. This allows it to determine whether the version space is empty
(consistency problem) by checking the satisfiability of the SAT formula. It is also

possible to output the most specific network, any most general networks G4, G, . . .,

20

Chapter 3. Constraint Acquisition

or any consistent network N € VS(E,Cenq). The paper also proposes a way to
determine whether the version space converges to a single concept (convergence

problem).

ConAcq.2 [12] is an active extension of CONACQ.1 that actively queries the oracle
with “membership queries”. A membership query asks the oracle whether a given
assignment is a solution of the problem or not. The algorithm aims to maximize
the information gained from each query. It presents heuristics to select the most
informative assignment to query, based on the current version space. The algorithm
iteratively prunes the version space by querying for new examples and updating the
SAT formula until it converges to a single concept or reaches a predefined stopping

criterion.

QuAcq [9] is an active constraint acquisition method that, given a fixed set of
candidate constraints, actively queries the oracle for “partial queries”. A partial
query presents the oracle with a partial assignment (an assignment of values to a
subset of the variables) and asks whether this assignment violates a constraint whose
scope is fully assigned. That is, the oracle must determine if the partial assignment
violates a constraint whose scope is contained within that specific subset of variables.
Crucially, this query does not ask if the partial assignment can be extended to a full
solution, but only about its own local validity. This type of query is more informative
than a full assignment query, as it allows the algorithm to focus on the scopes of
a specific candidate constraint. However, this approach assumes that the oracle
possesses a deep knowledge of the problem representation as a constraint network,

allowing it to evaluate the local validity.

GenAcq and Mine& Ask [8,15] GENACQ is a technique that can be integrated
into any constraint acquisition method that tries to infer new constraints over the
scopes of variables of the same “type”. It achieves this by querying the oracle
with “generalization queries”, which prompt the oracle to decide if the relation of a
learned constraint can be applied to other variables of the same type as those in the
original constraint. This approach requires providing the variable types in advance.
G-QUACQ is the name of the GENACQ algorithm when integrated into the QUACQ
method. MINE& ASK addresses the need for providing variable types in GENACQ by

21

3.4. Overview of Constraint Acquisition Methods

learning the potential types of variables directly during the constraint acquisition
process. It tries to find a community structure that is a group of variables with
dense connections (i.e. many constraints between them) internally and with sparser
connections with other variables. Thus, the method is efficient only if the problem

has community structure.

ClassAcq and BayesAcq [35] CLASSACQ is a passive constraint acquisition method.
The core idea is to first train a classifier to discriminate between positive and negative
examples, and then to derive a constraint model directly from the trained classifier.
BAYESACQ is an implementation of the CLASSACQ approach that uses a naive
Bayes classifier. The algorithm relies on a fixed set of candidate constraints Ceypg
and a training set F and treats each candidate as independent. For each ¢ € C,,,q,
it calculates a score K., which is the ratio of the probability that ¢ is violated by the
assignment of a negative example of E in to the probability that it is violated by the
assignment of a positive example of E (this ratio allows BAYESAcQ to be robust to
noise in the training examples). This score is interpreted as the “weight of evidence”
that the candidate is a constraint in the target network. A candidate c is learned as
a constraint if its score K. exceeds a predefined threshold. However, it relies on the
set of candidate constraints which must be expressive enough to capture the target

constraints and not too large to avoid overfitting.

Model Seeker [5] MODEL SEEKER is a passive constraint acquisition method
designed to find models for highly structured problems by learning from positive
examples. The hypothesis space is defined by relations of a large “catalog” [3, 4]
which contains high-level predefined relations such as ALLDIFFERENT or LEX that
are applied over scopes on predefined topologies of the variables, like a matrix (e.g.
applying ALLDIFFERENT over the rows and columns of a matrix). The algorithm
searches through these candidate constraints to find those that are satisfied by
all assignments of provided positive examples. It then presents a ranked list of
candidate constraints to the user, allowing them to select the most appropriate ones
for their problem. The primary limitation of the MODEL SEEKER method is that
it is effective only for problems with a common regular structure, as the scopes are
limited to predefined topologies. Additionally, its success is entirely dependent on the

expressiveness of the relations catalog: if a necessary relation for a constraint is not

22

Chapter 3. Constraint Acquisition

present in the catalog, it cannot be learned. On the other hand, because the method
relies on high-level relations and predefined topologies, the learned constraints can

often be directly used over different instances of the same problem.

COUNT-CP [21] COUNT-CP is a passive constraint acquisition method that
learns from positive examples constraints of the form b < expr < ub with expr an
expression over the variables in the problem and (b and ub are symbolic bounds (i.e.
they can be expressions that depend on the problem instance parameters). The
algorithm learns the expression over a predefined grammar. The algorithm works
in two steps: first, it learns individual constraints that satisfy all positive examples,
and then it groups these individual constraints to form first-order constraints over
predefined sets of variables (e.g. matrix or user-provided partitions like the edges of a
graph). Finally, it employs a filtering step to remove trivially true rules and rules that
describe redundant constraints or overly restrictive. A limitation of COUNT-CP
lies in the choice of the grammars, which must be expressive enough to capture
the target constraints, and it lies in the partitions of the variables, which must be

predefined.

URPILS [47] learns constraints from positive examples E using the Minimum
Description Length (MDL) principle. URPILS attempts to compute a network N
that minimizes the cost of describing both N and E given N, where the encoding cost
of F given N is proportional to the number of solutions of N. The method is robust
to noise by allowing inconsistencies with the training set £, which must also be
encoded. Constraint networks are built over Boolean variables 0, 1 and represented
through “objects” (e.g. Sudoku cells and values). Predefined object “relations” (e.g.
row, column) are used to express constraints as first-order logic rules over a fixed
grammar. URPILS performs greedy search with a solution count approximation,
iteratively adding constraints to reduce encoding cost. Its effectiveness depends

drastically on the chosen grammar and on the predefined “objects” and “relations”.

This review of existing methods highlights a significant reliance on a predefined set
of candidate constraints and, in many cases, a need for provided structural information
(e.g., variable types in GENACQ, topologies in MODEL SEEKER, predefined relations

23

3.4. Overview of Constraint Acquisition Methods

between variables in COUNT-CP and URPILS). This reliance on prior knowledge

is a limitation, as it may not always be available.

24

Chapter 4

Learning over Unknown Con-
straint Languages

This chapter addresses a fundamental limitation in constraint acquisition: the
requirement for prior knowledge of the target constraint language. Constraint
acquisition methods assume that either a set of candidate constraints, a gram-
mar for generating constraints, or a fixed constraint language is provided in
advance. This assumption significantly restricts their practical applicability,
especially when the oracle is a human user without expertise in constraint
programming or when dealing with black-box systems that lack explicit knowl-

edge.

This chapter is primarily based on the paper [6] published in the
Proceedings of the Thirty-Second International Joint Conference on
Artificial Intelligence (IJCAI-23).

Contents
4.1 Introduction 00000, 26
4.2 Language Acquisition, ..., 27
43 TheMethod. i oo, 30
4.3.1 Overview 31
4.3.2 The Modelo 31
4.4 Experimental Evaluation 34
4.4.1 Implementation 0L 34
4.4.2 Benchmark Problems 35

25

4.1. Introduction

4.4.3 Network and Language Acquisition 39
4.4.4 Detailed Analysis on the Sudoku Problem 44
4.5 Limitations and Perspectives 51
4.5.1 Lack of Structure 51
4.5.2 Interpretability of the Language 52
46 Conclusiono 53

4.1 Introduction

This chapter presents a general approach to constraint acquisition that requires only
that the oracle provide a set of solutions and non-solutions of the target constraint
network, while also addressing the overfitting problem. Instead of providing a set
of candidate constraints, we compute a suitable constraint language as part of the
learning process. Our method is based on the idea that the best constraint language
is the simplest one, which we define in terms of the maximum arity and number
of relations. This notion of simplicity allows our method to search for a constraint
network over an unknown constraint language that is consistent with the training

set while avoiding the pitfalls of overfitting.

We first define the decision version of the constraint acquisition problem over
an unknown constraint language when the maximum number £ of relations in the
unknown language and the maximum arity r of its relations are given. We prove that
the problem is NP-complete, even when k£ = r = 1. Given a number k of relations and
an arity r, we encode the problem of finding a constraint network over an unknown
language as a partial maximum satisfiability problem. We then propose a method to
solve the problem of finding a constraint network over an unknown language when k&
and r are not given. We only need to assume a preference order on the pairs (k,r),
and we search for the smallest pair (k,r) such that a constraint network over an
unknown language of size k and arity r is consistent with the training set. We finally

validate our method by analyzing its behavior on a set of benchmark problems.

Closely Related Work. There already exist two approaches that could be con-

sidered as partially addressing the constraint language assumption, though they still

26

Chapter 4. Learning over Unknown Constraint Languages

require significant prior knowledge. ARNOLD learns integer programs from examples
of feasible solutions by generating potential constraints that only include sums,
products, and comparisons among terms [22]. The generation of constraints follows
a general-to-specific order, and collects those that are satisfied by the assignments of
example solutions in order to produce an integer program. The constraint acquisition
CouNT-CP uses a grammar to generate constraints from examples of solutions and
non-solutions, allowing it to learn a constraint network that is consistent with the
training set. This grammar is able to express a wide range of “counting” constraints
(see [11]), but is not able to express arbitrary constraints. Thus, both approaches still
require substantial background knowledge about the target constraint language in the
form of predefined grammars, which limits their applicability when the appropriate

constraint types are unknown a priori.

The rest of this chapter is organized as follows. In Section 4.2, we present the
formalization of the constraint acquisition problem over an unknown constraint
language, and prove that it is NP-complete. In Section 4.3, we describe our method.
In Section 4.4, we study the effectiveness of our method through several experiments.
In Section 4.5, we discuss the limitations of our method, and outline future research

directions. Finally, in Section 4.6, we conclude with a summary of our contribution.

4.2 Language Acquisition

We consider the constraint acquisition problem without any language of constraints
or a set of candidate constraints given as input data. A straightforward approach to
eliminate prior knowledge may be to apply a constraint acquisition method that needs
candidate constraints, such as CONACQ, while providing all the possible constraints
over the target network variables as candidate constraints. However, this approach
is not practical because the number of possible constraints grows exponentially with

the number of variables and their domains. Specifically, for n variables with domains

n(n—1)
2

constraints, and so forth. This renders this approach computationally impractical.

. . . . 2 .
of size d, the constraint space includes n x 2¢ unary constraints, x 24" binary

To partially address this issue, we can fix the maximum arity r of the candidate

constraints. To keep the same expressiveness, we can consider all possible arities

27

4.2. Language Acquisition

iteratively and first learn unary constraints, then binary constraints, and so on, until
we find a constraint network that is consistent with the training set. This approach
still suffers from the exponential growth of the number of candidate constraints,
which makes it impractical for large arities or domains, but could be feasible for

small arities.

However, it still faces the most important practical problem: overfitting. If
too many candidate constraints are provided, the method may learn a constraint
network that overfits the training data, failing to generalize to unseen examples. Any
approach that provides a large number of candidate constraints risks overfitting if it

does not include a mechanism to prevent this issue.

Rather than working with a fixed constraint language, we propose to compute a
suitable constraint language I" alongside a constraint network over I that is consistent

with the training set.

An important difficulty with this approach is that there may exist a large number
of constraint languages that are consistent with a given training set. Some of these
languages are clearly unsatisfactory from a practical point of view. For example,
every training set over n variables is trivially consistent with a constraint network
over a constraint language of arity n and size 1. This constraint network has a single
constraint covering all variables. Its satisfying assignments are exactly the positive

examples in the training set.

Our intuition is that the best constraint language is the simplest. Because “sim-
plicity” is difficult to define formally, we instead consider (as a rough approximation)
that the best language is the smallest in terms of its maximum arity and number
of relations. This leads us to the following definition for the constraint acquisition

problem without language.

Definition 9 (LANGUAGE-FREE AcQ). Given a training set E and two natural
numbers k and r, the problem LANGUAGE-FREE AcCQ asks whether there exists a
constraint network over a language of size at most k and arity at most r consistent
with E.

In practice, we will solve an optimization and search variant of this problem, in

which we attempt to find a constraint network with minimum (k, r) that is consistent

with £. The problem is multi-objective (both the language arity and size must

28

Chapter 4. Learning over Unknown Constraint Languages

be minimized), so multiple strategies are possible: for example, one could define a
real-valued cost function f(k,r) to be minimized or compute a Pareto front. The next
theorem states that LANGUAGE-FREE ACQ is NP-complete even when (k,r) = (1, 1),
so solving the optimization/search variant is likely to be difficult regardless of the

chosen strategy.

Theorem 1. LANGUAGE-FREE AcQ is NP-complete even when k =r = 1.

Proof. We first prove membership in NP. Suppose that there exists a constraint
network N = (X, D, C) over a language I' = (Ry, ..., Ry) of arity r and size k that
is consistent with E. We can further assume that each constraint rejects at least
the assignment of one negative example that is accepted by all other constraints, in
which case N has at most | E| constraints. We specify each relation R; € I' succinctly
by listing only the tuples ¢t € R; such that there exists a constraint ¢ = (R;,.5)
and an example e € F such that a(e)[S] = ¢; the number of such tuples is at most
|C| - |E|] < |E|?. This succinct representation of N has polynomial size (even when
r, k are part of the input) and can be checked for consistency with E in polynomial
time, so LANGUAGE-FREE AcqQ € NP.

In order to prove NP-hardness, we reduce SAT to LANGUAGE-FREE AcCQ. Let
CL ={Z,%Zs,...,Z,} be a set of m clauses over a set V = {vy,vy,...,v,} of n
Boolean variables. We define a training set E over the set of variables X = {z, |
veV}iUu{z, |veV}ofdomain D={v|veV}U{-wv|veV}U/{x} such that:

» ¢/ € ET such that Vo € X, a(ef)[z] = *

« Yv e Vel € ET such that:
- ifz=ux,
Vee X,alez]=<%v ifz=u12,

* otherwise

« Yv e V,e; € E~ such that:
v ifx=ux,
Ve e X,ale))z] =S —w ifz=uz,

* otherwise

29

4.3. The Method

[ifle”Z
e VZ € CL,e, € E~ with a(ey)[r] =
*x otherwise

We claim that there exists a constraint network N = (X, D, C) over a language
{R} of size 1 and arity 1 which is consistent with E if and only if C'L is satisfiable.

Let us assume that there exists such a network N consistent with £. We show
that this implies that C'L is satisfiable. N must accept a(e]), so x € R. For each
v € V, N must reject a(e,). Hence, we have either v ¢ R and (R,{z,}) € C, or
v ¢ R and (R,{z-,}) € C. We cannot have both v and —w forbidden by R because
a(el) must be accepted by N. We thus have exactly one among v and —w forbidden
by R, and we can define the assignment p : V' — {False, True} such that for each
v €V we have p(v) = True < v ¢ R and p(v) = False < —w ¢ R. We also know
that for all Z € C'L, N has to reject a(ey). Now, a(ey)[x] = = for all z except
those literals composing Z. As a result, there is at least one literal [in Z such that
[¢ R, and then u(l) = True. We conclude that p satisfies CL. Let us now assume
that there exists an assignment p that satisfies C'L. We show that this implies that
there exists a network N = (X, D, () over a language {R} of size 1 and arity 1
which is consistent with E. We define the relation R = D \ {l | u(l) = True} and
C ={(R,(zy)) | Yv € V,u(v) = True} U{(R, (z=)) | Vv € V,u(v) = False}. N
accepts a(e]) because x € R. For all v € V| either (R, {x,}) € C with —v € R and
vé R, or (R, {z-,}) € C with v € R and —v ¢ R, but not both. Hence, N accepts
a(el) and rejects a(e,). As u satisfies C'L, for each Z € CL, there exists [€ Z such
that u(l) = True. Thus, (R, {z;}) € C with [¢ R and N rejects a(ey). We conclude
that the network N constructed above, which is over a language {R} of size 1 and

arity 1, is consistent with E.

Both N and F are computable in polynomial time from C'L. O]

4.3 The Method

In this section, we present our method for constraint acquisition, which is based on
repeatedly solving instances of the LANGUAGE-FREE AcCqQ problem.

30

Chapter 4. Learning over Unknown Constraint Languages

4.3.1 Overview

Given a training set F/, our goal is to compute a constraint network consistent with
with minimum (k, 7). As noted in Section 4.2, multiple strategies are possible. The
most direct approach would be to output a constraint network with minimum k& + r.
We believe that increasing the arity should incur a greater penalty than increasing
the number of relations, so we will minimize k& + r? instead. We break ties by giving
preference to lower arity (for example, six relations of arity two are preferred over

one relation of arity three).

It may be the case that multiple constraint networks have the same arity and
number of distinct relations. In this case, we output a network with the largest
number of constraints. Our intuition behind this decision is that for sufficiently large
training sets, the fact that few relations can be applied to many scopes without
rejecting the assignment of any positive example is unlikely to be observed by chance.
For the same reason, if multiple constraint networks have the same (k,) and number
of constraints, we output one whose constraints are the tightest (i.e. whose relations
accept the fewest tuples and therefore a constraint with this relation rejects the most
assignments). Given (k,r), we compute the desired constraint network (or prove
that none exists) using a WEIGHTED PARTIAL MAX-SAT model, which we describe
in the next sub-section. Since our model is particularly efficient for small values of
(k,r), we perform bottom-up minimization, constructing and solving a model for
each (k,r) by increasing order of k + 72. We output the first constraint network

found.

4.3.2 The Model

Given (k,r) fixed. Our goal is to compute a constraint network N = (X, D, C') over a
language of size k and arity r that is consistent with E, whose number of constraints
is maximum, and with the tightest constraints possible. We model this optimization
problem as an instance of WEIGHTED PARTIAL MAX-SAT. In the following, RT(F)
will denote the set of all pairs (¢,v) such that t € D", v € X", and there exists an

example e in E such that ¢t = a(e)[v].

For each relation R, of the target language {R1, ..., Ry}, we have three kinds of
Boolean variables in the WEIGHTED PARTIAL MAX-SAT model:

31

4.3. The Method

o Foralltin D", r}' is True iff t ¢ Ry;
o For all vin X", s¥ is True iff (R,,v) € C;
o Forall (¢,v) in D" x X", cf,) =71 A sy

First, for each (u,?,v) € {1,...,k} x D" x X", we ensure that cf;) = ry A s with

the following hard clauses:

ry Vv _‘C?tﬂ;)
Sy V Cw (4.1)

u u U
g VTS,V Clh

Second, we make sure that all the assignment of positive examples are accepted

by the corresponding constraint network with the following set of hard clauses:

Vu € {1,....k},¥(t,v) € RT(ET), ¢y, (4.2)
Similarly, we make sure that the assignments of all negative examples are rejected:

Ve e E, \V Cliw) (4.3)
Vue{l,...k}Y(tw)eRT({e})

Finally, in order to maximize the number of constraints in the network and, in a
second time, minimize the number of tuples in the relations, we add a soft clause (s¥)
with weight 1 for each uw € {1,...,k} and v € X", and a soft clause (r}") with weight
e <1/(k-|D"|) for each u € {1,...,k} and t € D". This completes the description
of the model.

The size of this WEIGHTED PARTIAL MAX-SAT model is defined by its number
of clauses and their sizes. The number of —constant-size— clauses of type (1) and
(2) is O(|D|" - | X|" - k). There are |E~| clauses of type (3), each of size bounded
above by |D|" - |X|" - k. Finally, the number of —constant-size— soft clauses (s!) and
(r#) is bounded above by (|X|" + |D|") - k . This gives a total size of our model in
O(E~| - |DI"- |X]"- k).

Observe that the exponential dependency on the maximum arity r is not a
necessary feature of all models for this problem because LANGUAGE-FREE AcCQ is

32

Chapter 4. Learning over Unknown Constraint Languages

in NP (even when r is part of the input). However, this model has the advantage of
being flexible (it is easy, for example, to maximize the number of constraints in the

learned constraint network), and very efficient for small values of r.

In addition, this upper bound is quite loose, as not all variables/clauses need to
be generated. For any w,t,v such that (¢,v) ¢ RT(E~), we do not need to generate
the variable c{;) and the corresponding clauses described in Equation (4.1) because
it will never appear in the clauses of type Equation (4.2) or Equation (4.3). The same
is true for all u, ¢, v such that (¢,v) € RT(E™). These refinements are particularly

effective when the number of examples is small.

Finally, we note that the model contains some symmetries. For example, its
solution set is invariant under permutation of the relational indices u € {1,...,k}
and permutation of the entries of (¢,v) for a fixed u. These symmetries can easily be
broken using standard techniques. It was unnecessary for our experiments as k, r

were always fairly small.

Example 4.3.1 (Illustrative Example). Consider a toy problem with two vari-
ables X = {x1,22} and domains D = {0,1}. We aim to learn a constraint

network with parameters k =1 (one relation) and r = 2 (binary).

Suppose the training set E consists of one positive example et = {x1 = 0,29 = 1}

and one negative example e~ = {x; = 0,29 = 0}.
The model generates the following Boolean variables for the single relation R;:

e Relation variables: r},, v}, 19, 71;- (€-9., Ty = True means tuple (0,0)
is forbidden by R;.)

« Scope variables: s!

(z1,22)

« Connection variables: cly) . 1)) Clo1.(er.0)) - - - 0d similarly for scope

(1‘2, [L’l).

1
and S (3,01) "

The clauses are generated as follows:

o Consistency (Eq. 4.1). For every tuple t and scope (x1,x2), we enforce

c=rAs. Forinstance, for tuple (0,0):

1

s 1
961,362))’ (961,362)

1 1 1 1 1
Too V 7C(00,(V €00 (@1,a2))r 00 YV TS (@ ,a2) VY C(00,(21,22))

o Positive examples (Eq. 4.2). For et, the network must not reject the

33

4.4. Ezxperimental Evaluation

assignment on any scope:

1 1
TCOL (a1 ,a2)) W TC(10,(2p,00))

o Negative examples (Eq. 4.3). For e, the network must reject the

assignment on at least one scope:

C(00,(z1,22)) ¥ C(00,(x2,21))

4.4 Experimental Evaluation

In this section, we experimentally evaluate our method (that we will refer to as LFA)
on several benchmark problems. For each benchmark, we investigate how the number
of examples affects the accuracy of the learned constraint network, the similarity
of the learned constraint network with the target (i.e. whether they are over the
same constraint language, logically equivalent, or exactly identical), and the observed
runtime. We then provide a detailed analysis for a representative benchmark of
constraint acquisition, the Sudoku, examining in particular how the fraction |E*|/|E|

of positive examples in the training set affects the learning process.

4.4.1 Implementation

We have implemented the strategy described in Section 4.3.1 in the Python program-
ming language. The initial implementation used for our paper [6] was based on the
UWRMAXSAT solver [33], which is a state-of-the-art Max-Sat solver. However, we
have since switched to the OR-To0OLS solver [32] for the current implementation.
The switch to OR-T0OLS was motivated by its performance, and ease of integration
with our Python code without the need to install an external solver. We have also
simplified the use of our method by providing it as a Python package. The package
includes a simple interface for easy access. A small example is provided in Figure 4.1,
which illustrates how to use the package to learn a constraint network from a training
set stored in a CSV file. The complete source code and datasets for the experiments
are hosted on GitHub: github.com/hareski/language-free-acq under the Aca-
demic Free License (AFL-3.0), and are available on the Python Package Index (PyPI)

34

https://github.com/hareski/language-free-acq

Chapter 4. Learning over Unknown Constraint Languages

under the name languageFreeAcq (pypi.org/project/languageFreeAcq). The pack-
age can be easily installed by using the command pip install languageFreeAcq.
All experiments presented in this section were conducted on 8 cores of an AMD Epyc
9554 processor with 16GB of RAM.

1 from languageFreeAcq import Acquisition
3 csp = Acquisition().learn("path/to/training_set.csv")

5 # Get the learned constraint network:

¢ constraints = csp.get_constraints ()

8 # Get the learned constraint language:

9o relations = csp.get_language ()

Figure 4.1: Illustration of how to use our method in an external Python script.

4.4.2 Benchmark Problems

We assess our method on a diverse set of benchmark problems. For each benchmark,
we describe a constraint network that models the problem, including its variables,
domains, and constraint language. We also explain how the examples in the training
set are generated for each benchmark. The test set is generated in the same way as

the training set.

Sudoku

Sudoku is a logic puzzle with a 9 x 9 grid that must be filled with the digits 1 to 9 in
such a way that all the rows, all the columns, and 9 non-overlapping 3 x 3 squares
contain all the digits from 1 to 9. For this problem, the target constraint network has
81 variables x1, ..., g1, domains of size 9, and a binary constraint x; # z; for all 4, j
in the same row, column or square. Positive examples are generated by computing
solutions of the target constraint network with a constraint solver using a randomized
domain value strategy. Non-solutions are generated by randomly altering one value

in a solution.

35

https://pypi.org/project/languageFreeAcq

4.4. Experimental Fvaluation

Jigsaw Sudoku

Jigsaw Sudoku is a variant of Sudoku in which the partition in 3 x 3 squares is replaced
by a partition into non-overlapping, irregular shapes of size 9 called jigsaw shapes.
The irregularity of the jigsaw shapes makes Jigsaw Sudoku particularly difficult (or
even impossible) to learn for methods that rely heavily on predefined constraint
topologies, such as MODEL SEEKER. For this problem, the target constraint network
has 81 variables x, ..., zs;, domains of size 9, and a binary constraint z; # z; for all
1,7 in the same row, column or jigsaw shape. Examples are generated in the same

way as for Sudoku.

We have observed significant variance in experimental results for different types of
jigsaw shapes. To reflect this, we have divided this benchmark into three sub-families
(#1, #2 and #3) corresponding to three different layouts.

O | Ot | Ot OOt O N | DN

NN Y= (ES T AP N [V VS IS
OO~ | oo
R V=N Y-S P | IS NG IS VOB

2
2
4
4
4
4
)
9
9

| ool oo| oo
|00 |oo|oo| |
ololot|o| n ||
©

(a) Jigsaws [#1] (b) Jigsaws [#2] (c) Jigsaws [#3]

Figure 4.2: Visualization of the three Jigsaw Sudoku layouts. Each cell represents the
Jigsaw number (e.g., all cells with value 1 are in the same jigsaw region) of the variable x; ;
where (7, j) are the coordinates of the variable on the 9 x 9 grid. The regions are labeled
with numbers from 1 to 9, and each number corresponds to a different color. The regions
are irregularly shaped, which is characteristic of Jigsaw Sudoku. The figure shows three
different layouts ([#1], [#2], and [#3]).

Schur’s Lemma

The problem is to put n balls labelled 1,...,n into 3 boxes so that for any triple

of balls (x,y,z) with + y = 2, not all are in the same box. For this problem,

36

Chapter 4. Learning over Unknown Constraint Languages

the target constraint network has n variables x1,..., x,, domains of size 3, and a
ternary constraint NotAllEqual(z;, x;, zx) for all 4, j, k such that i +j = k. We
ran the experiment with n = 9 which is the parameter with the highest number
of solutions (546). Positive examples are generated by computing solutions of the
target constraint network with a constraint solver using a randomized domain value

strategy. Non-solutions are generated by randomly altering one value in a solution.

Subgraph Isomorphism

Given two graphs G and H, subgraph isomorphism is the problem of determining
whether GG contains a subgraph that is isomorphic to H. For this problem, the target
constraint network has |H| variables xy,...,z, and domains of size |G|. A binary
constraint x; # x; for all 7, j ensures that the mapping between the vertices of A and
G is a one-to-one function and another binary constraint ensures that for any edge
(a,b) in H, (x4, xp) is an edge of G. We ran the experiment with H a cycle of size 5

(5-cycle) and a new random graph G for each run having 20 vertices and 100 edges.

Positive examples are generated by computing solutions of the target constraint
network with a constraint solver using a randomized domain value strategy. Non-
solutions are paths and closed walks (not isomorphic to H) of G computed using a

randomized domain value strategy.

i
s\\\‘m

o

S
e
S\

ks
[

=/

)
<)
X
\ =/

(2
LS

Q G SO
%

(a) Graph H (pattern to find) (b) Example of grap

79
"
e
X {\‘i
\
S

Z>

N

>

i‘é
)-/ﬂv
3

0y,
%
=Y
<

NXA
A

YOS
/0%
<

<
—
&V

"\"‘.
i
0

=
@Q

Figure 4.3: Visualization of graphs used in the subgraph isomorphism problem. The task
is to find whether graph H is isomorphic to a subgraph of G.

37

4.4. Ezxperimental Evaluation

8-Queens

The 8-Queens problem is the problem of placing 8 queens on an 8 x 8 chessboard such
that no two queens can attack each other. For this problem, we use the standard
representation in which there is a variable per column. The target constraint network
has N variables x1,...,xy, where x; represents the row in which the queen on the
ith column is positioned. All domains are {1,..., N}. There are binary constraints
z; # x; and |z; — x| # |i — j| for all 4,j. This gives us a language of size N
corresponding to all possible values of |i — j|. The constraint language is binary
and has size N. We ran the experiment with N = 8, for which the problem has
92 solutions. With this parameterization, the target constraint language contains 8
binary relations. We generate positive examples by computing a random solution,
and negative examples by randomly permuting two values or altering one value in a

solution.

Golomb Ruler

The Golomb Ruler problem is the problem of finding a set of marks on a ruler such
that the difference between any two marks is unique. The target constraint network
has n variables, each representing the position of a mark on the ruler, domains of
fixed size {0...m}, and a quaternary constraint |x; — x;| # |vx — 2| for all 4, j, k, 1
(we do not ensure that i, 7, k, [are distinct, so the constraint is quaternary, but it can
be seen as a ternary constraint in some cases where i = j or k = [, or even binary).
For the experiment, we choose to use n = 10 and m = 60. Positive examples are
generated by computing a random solution of the target constraint network with the
symmetry breaking constraint x; < x; for all ¢ < j, and then randomly permuting
the values of this solution. Non-solutions are generated by randomly altering one

value in a solution.

Exam Timetabling This problem (used as a benchmark in [41,43-45]) involves
scheduling exams for a set of courses across multiple semesters within a specified
period, with the goal of assigning each course to a unique timeslot while adhering
to specific constraints. An instance of the problem is defined by five parameters: s
the number of semesters, n the courses per semester, t the timeslots per day, d the

number of days, and r the number of rooms. The variables are the s x n courses

38

Chapter 4. Learning over Unknown Constraint Languages

with domain the ¢ x d x r timeslots. The constraints are that each course must be
assigned to a unique timeslot, and that courses from the same semester must be
scheduled on different days to avoid conflicts. We ran this benchmark problem with

three instances with different parameter configurations:

[#1] 3 semesters and 2 courses with 3 days, 2 slots and 1 room;
[#2] 4 semesters and 3 courses with 3 days, 2 slots and 2 rooms;

[#3] 5 semesters and 4 courses with 5 days, 2 slots and 2 rooms.

Positive examples are generated by computing solutions of the target constraint
network with a constraint solver using a randomized domain value strategy. Non-
solutions are generated by randomly altering one value or permuting the values of

two variables in a solution.

Nurse Rostering This problem is used in [41,43] and also present in [21,22] with
slight differences. It involves scheduling nurses for a set of shifts over a specified
period, with the goal of assigning each shift to a nurse while adhering to specific
constraints. An instance of the problem is defined by three parameters: n the number
of nurses, s the number of shifts per day, & the number of slots per shift and d the
number of days. The variables are the k x s x d slots with domain the n nurses. The
constraints are that no two slots of the same day are assigned the same nurse and
slots in the last shift of a day, and the first shift of the next day cannot be assigned
the same nurse. For this problem, we have selected three instances with different

parameter configurations.

[#1] 4 days, 2 shifts and 4 slots per shift with 12 nurses;
[#2] 5 days, 3 shifts and 5 slots per shift with 18 nurses;
[#3] 7 days, 3 shifts and 3 slots per shift with 15 nurses.

Positive examples are generated by computing solutions of the target constraint
network with a constraint solver using a randomized domain value strategy. Non-
solutions are generated by altering one value or randomly permuting the values of

two variables in a solution.

4.4.3 Network and Language Acquisition

In this first experiment, we evaluate the overall performance of our method on the

acquisition of our benchmark problems. We first present the experimental protocol

39

4.4. Ezxperimental Evaluation

and then discuss important points in the results.

Protocol

We conduct a series of experiments with different numbers of examples in the
training sets that depend on the instance of the problem. For each benchmark
problem and number |E| of examples, we run our acquisition method LFA 5 times
with a new randomly sampled training set for each run. Training sets contain positive
and negative examples in equal proportion. The timeout is set to 12 hours. The
performance of the model is measured in terms of the average accuracy over the five
runs, which is computed on a new set of 2000 examples generated independently.
We also report the optimal (k,r) values found, the number of times the learned
language is the target language (out of the 5 runs), the number of times the learned
network is equivalent to the target network (i.e. they have exactly the same solutions)
and the number of times the learned network is precisely the target network (i.e.
with exactly the same constraints). We finally record the average runtime of the
acquisition process, including the time required to prove that there does not exist
any network consistent with E for values of (k,r) smaller than the (optimal) one

returned.

Results

We provide a summary of the results in Table 4.1. The target network for the Sudoku
problem is consistently learned (that is, learned for all 5 runs) with 200 examples in
the training set, and even as few as 100 examples in 2 runs out of 5. Jigsaw Sudoku
required significantly more examples before reaching 100% accuracy, from 500 to
1300 depending on the jigsaw shapes. For this problem, the target constraint network
is never learned, regardless of the size of the training set. Equivalent networks
are learned instead, which we observed to correspond to the target network with
additional redundant constraints. (For the classical Sudoku, all possible redundant
inequality constraints are already included in the target network. This is not true for
all jigsaw shapes.) For Schur’s Lemma, with only 50 examples, the target constraint
language is consistently learned, and the accuracy is above 85%. This is particularly
interesting because this language has arity 3, and with our search strategy (minimizing

k + r? where k is the number of relations and r is the arity), the target language

40

Chapter 4. Learning over Unknown Constraint Languages

Problem |E| Accuracy (k,r) Language Equivalent Target Runtime(s)
Sudoku 100 83.7% (1,2) 5/5 2/5 2/5 29.5
150 98.9% (1,2) 5/5 4/5 4/5 21.7

200 100% (1,2) 5/5 5/5 5/5 28.6

400 100% (1,2) 5/5 5/5 5/5 36.3

Jigsaw #1 400 98.9% (1,2) 5/5 0/5 0/5 29.1
600 995% (1,2) 5/5 0/5 0/5 36.8

800 99.8% (1,2) 5/5 3/5 0/5 34.9

1200 99.9% (1,2) 5/5 4/5 0/5 38.3

1300 100% (1,2) 5/5 5/5 0/5 37.0

1400 100% (1,2) 5/5 5/5 0/5 3.1

Jigsaw #2 400 99.3% (1,2) 5/5 2/5 0/5 30.1
600 99.9% (1,2) 5/5 4/5 0/5 39.0

700 99.9% (1,2) 5/5 4/5 0/5 35.5

800 100% (1,2) 5/5 5/5 0/5 35.8

Jigsaw #3 400 99.7% (1,2) 5/5 3/5 0/5 35.4
500 100% (1,2) 5/5 5/5 0/5 32.3

600 100% (1,2) 5/5 5/5 0/5 A1.7

Schur’s 10 5L.9% (L2) 0/5 0/5 0/5 0.1
Lemma 50 86.9% (1,3) 5/5 0/5 0/5 6.7
100 96.3% (1,3) 5/5 0/5 0/5 1.4

200 98.8% (1,3) 5/5 2/5 2/5 1.7

400 99.7% (1,3) 5/5 3/5 3/5 2

500 99.8% (1,3) 5/5 4/5 4/5 1.8

600 100% (1,3) 5/5 5/5 5/5 1.9

Subgraph 100 587% (1,2) 0/5 0/5 0/5 0.5
Isomorphism 400 99.7% (2,2) 0/5 0/5 0/5 3.9
600 99.9% (2,2) 0/5 4/5 0/5 7.4

700 100% (2,2) 0/5 5/5 0/5 7.4

800 100% (2,2) 0/5 5/5 0/5 10.1

8-Queens 100 87.2% (2,2) 0/5 0/5 0/5 2.4
184 99% (3,2) 0/5 0/5 0/5 8.9

41

4.4. Ezxperimental Evaluation

Problem |E| Accuracy (k,r) Language Equivalent Target Runtime(s)
Golomb 400 76.6% (1,2) 0/5 0/5 0/5 167.8
ruler 800 715% (2,2) 0/5 0/5 0/5 21 616
1600 - - - - - > 43 200
3200 100% (1,3) 0/5 5/5 0/5 10 399
Nurse 100 778% (1,2) 2/5 0/5 0/5 29.94
Rostering #1 150 96% (1,2) 4/5 4/5 3/5 13
200 100% (1,2) 5/5 5/5 5/5 455
Nurse 200 75.3% (1,2) 1/5 0/5 0/5 43 200
Rostering #2 300 99% (1,2) 5/5 3/5 3/5 157.9
400 100% (1,2) 5/5 5/5 5/5 77.9
Nurse 400 08% (L,2) 5/5 3/5 3/5 77.9
Rostering #3 600 99.5% (1,2) 5/5 4/5 4/5 115.7
700 99.7% (1,2) 5/5 4/5 4/5 115.7
800 100% (1,2) 5/5 5/5 5/5 106.5
Exam 100 84% (2,2) 0/5 0/5 0/5
Timetabling #1 150 9% (2,2) 4/5 4/5 4/5
200 100% (2,2) 5/5 5/5 5/5 45
Exam 400 97.2% (2,2) 0/5 0/5 0/5 9.2
Timetabling #2 800 99.6% (2,2) 3/5 3/5 3/5 9.9
1200 99.6% (2,2) 3/5 3/5 3/5 9.6
1400 99.9% (2,2) 4/5 4/5 4/5 9.7
1500 100% (2,2) 5/5 5/5 5/5 10.1

42

Chapter 4. Learning over Unknown Constraint Languages

Problem |E| Accuracy (k,r) Language Equivalent Target Runtime(s)
Exam 600 98.3% (2,2) 2/5 2/5 2/5 55.3
Timetabling #3 700 09% (2,2) 2/5 2/5 2/5 33.7
800 995% (2,2) 2/5 2/5 2/5 28.5
900 100% (2,2) 5/5 5/5 5/5 31.8

Table 4.1: Summary of the experiment with the LFA method described in Section 4.4.3.
|E| is the number of examples in the training set; Accuracy is the accuracy measured
on a new set of 2000 examples generated independently; (k,r) gives the optimal values
computed for the size and arity of the learned constraint language; Language is the number
of times the target language is learned out of 5 runs; Equivalent is the number of times the

learned and target network are equivalent out of 5 runs; Target is the number of times the

target network is learned out of 5 runs.

has a score of 10. Before it even attempts to find a solution for a language with
arity 3 (like the target for Schur’s Lemma), it first exhaustively attempts to find a
network consistent with the training set over all constraint languages with at most 6
binary relations (k + 72 < 10). Thus, this means that all constraint languages with
at most 6 binary relations can be ruled out with very few examples. Learning the
target network consistently requires up to 600 examples, although 2 runs out of 5
succeeded with only 200. Subgraph isomorphism is the first problem for which the
target language contains two relations. With 100 examples, the learned networks
are over a language with a single relation, and the accuracy is below 60%. 100%
accuracy and equivalent networks are reached with 700 examples, although the target
network and language can never be learned. This is because it is theoretically not
possible to distinguish the graph G (whose edges correspond to the tuples of one
relation in the target language) from another graph G’ with identical 5-cycles using
only examples. Since the examples only capture the presence or absence of a 5-cycle,
any graph with identical 5-cycles may generate the same training examples. For the
8-Queens problem, the experiment is limited to at most 184 examples because the
problem has only 92 solutions and we need 50% of positive examples in the training
set. We observe that even training sets with 184 examples are not sufficient to reach
100% accuracy or learn the target constraint language (which is of size 8). Instead,
our method outputs constraint networks over languages of size only 3 that achieve

99% accuracy.

43

4.4. Ezxperimental Evaluation

The Golomb Ruler is particularly challenging because the target language has
arity 4. Runtimes are extremely high, with the 12 hours timeout being reached
for 1600 examples. In three of the five runs, no solution was found within this
timeframe; thus we exclude results for 1600 examples. With 400 examples, an
accuracy of 76.6% is reached with a constraint language containing a single binary
relation. With 800 examples, a lower accuracy of 71.5% is reached with a constraint
language containing two binary relations. Perhaps surprisingly, with 3200 examples,
an equivalent constraint network over a language with a single ternary relation is
obtained in all five runs. This relation is symmetric and is applied to all possible
triples of distinct variables, revealing some hidden structure in the solutions of this
problem. For the Nurse Rostering, the target constraint language and the target
constraint network are consistently learned with a number of examples ranging from
200 to 800, depending on the instance. Running times are generally small when
the number of examples is large enough to reach a good accuracy, but can be very
long when the number of examples is relatively small. This is the case, for instance,
with the #2 of the Nurse Rostering problem, where we reach the 12 hours timeout.
However, the solver returns the best network found during the search, which cannot
be verified as optimal. These (possibly suboptimal) networks achieve only 75.3%
accuracy on average. For the Exam Timetabling problem, the target constraint
network is consistently learned with a number of examples ranging from 200 to 1500,
depending on the instance. The second instance seems to be the most difficult one
in terms of the number of examples needed to reach 100% accuracy, requiring 1500
examples. However, in this specific instance, the accuracy is above 99.6% from 800
examples. Increasing the training set size from 800 to 1500 examples only serves to
gain the final 0.4% of accuracy.

4.4.4 Detailed Analysis on the Sudoku Problem

In this section, we investigate how the number of examples and the positive-to-
negative ratio in the training set affect the accuracy and runtime of the learned

constraint network with an archetypal example of constraint acquisition: the Sudoku.

44

Chapter 4. Learning over Unknown Constraint Languages

Runtime

In this experiment, we take a closer look at the runtime required by our method
LFA, as a function of the number of examples. We focus on the Sudoku problem
and run the experiment with the number |E| of examples going from 0 to 300 by
steps of 5. For each value, we run our method five times (with |[E*|/|E| = 0.5) and
report the average runtime. For this experiment, we set the timeout to 3 hours (10
800 seconds). If any of the five runs reaches the 3 hours timeout without finding and
proving the optimal network, we ignore the others and simply report a timeout for

the corresponding |E]|.

X X X X X XX

—_
o
S

10°
107

.Oo.00.000000000‘0‘0‘00000
10!
Sudoku

found

Time in seconds

10°

1071

T
20 40 60 80 100 120 140 160 180 200
Number of examples

o d vl vl vl vl 1y

Figure 4.4: Runtime as a function of the number of examples for the Sudoku problem. The
vertical line indicates the number of examples from which the output is the target Sudoku

network. Notice that the y-axis is on a logarithmic scale.

Figure 4.4 shows our results. An optimal constraint network (in the sense of our
objective function) is found rather quickly when the number of examples is either
extremely small (5 to 15) or sufficiently large (55 or more). This is unsurprising
because examples translate into hard clauses in our WEIGHTED PARTIAL MAX-SAT
model: with very few examples the model is underconstrained, and with sufficiently
many examples the search space becomes small. The transition appears to occur
between 15 and 55 examples, where the solver systematically reaches the timeout. As
we will see in the last experiment, for such values of |E| the accuracy of an optimal
constraint network would be close to 0.5. This means that, at least in the case of the

Sudoku problem, very long runtimes are only observed for training sets that are too

45

4.4. Ezxperimental Evaluation

small for our method to learn the target constraint network (independently of the
computational resources available). For 170 examples or more, the optimal solution

is the target Sudoku network and is found in less than 30 seconds.

Ratio of Positive Examples

In this experiment, we vary the fraction of positive examples p = |E*|/|E| in the
training set. For each p € {0,0.2,0.4,0.5,0.6,0.7,0.8,0.9, 1}, we generate training
sets with a fraction p of positive examples. In Table 4.2 we report the minimum
number of examples needed by our method to return the target Sudoku network.

Results are averaged over five runs.

p 0 02 04 05 06 07 08 09 1

|E| x 343 172 137 115 106 97 105 X

Table 4.2: Number |E| of examples needed to learn the target Sudoku network for a given

fraction p of positive examples. A cross indicates that the target network is never returned.

We see that our method does not learn the target constraint network with only
positive examples (p = 1). Indeed, in this case a degenerate constraint network with
(k,r) = (1,1) can be learned. It applies a very loose relation to all variables, and
does not enforce real constraints on the values of the variables. This network is the
simplest network that is consistent with all the examples and maximizes the number
of constraints in the network. Likewise, our method does not learn the target network
with p = 0. In this case, the degenerate constraint network that can be learned
applies the empty relation to all variables, meaning that it rejects all assignments of

values to the variables.

Except for these two extreme cases, we observe that as the ratio of positive
increases, fewer examples are needed to acquire the target network. This is not valid
past a certain point; we observe an increase in the number of required examples at
p = 0.9 compared to p = 0.8 because our method needs some negative examples to
learn the target relation. Overall, it seems that our method performs best on the

Sudoku problem when the ratio of positive examples is 0.8.

46

Chapter 4. Learning over Unknown Constraint Languages

Accuracy and Number of Constraints Learned

In this experiment, we analyze the accuracy of the learned constraint networks as
a function of the number of examples. We also measure the average number of
constraints learned that are not in the target network. We vary the number |E| of
examples from 50 to 200 by steps of 5, with |E™|/|E| = 0.5 for all training sets. For
each value |E|, we run our method 5 times on samples of |E| randomly generated
examples. We then measure the average accuracy of the 5 learned constraint networks
using 2000 additional examples and the average number of constraints learned that
are not in the target network. Figure 4.5 shows the average accuracy as a function
of |E| and Figure 4.6 shows the average number of constraints learned that are not
in the target network but are learned by our method with this specific number of

examples as a function of |E|.

The language learned with more than 75 examples is always the target language,
which is the one with only the binary disequality relation. With more than 75
examples, the number of constraints not learned that are in the target network is
always 0. Indeed, our method primarily maximizes the number of constraints learned
that satisfy all examples. Thus, if the language learned is the target language, our
method cannot miss any constraints, it can only learn additional constraints that

are not in the target network.

1.0 A
0.9 1
0.8 1
0.7 1
0.6 1
0.5

0.4 \ \ T T T
50 75 100 125 150 175 200

Number of examples

Accuracy

—— Accuracy

Figure 4.5: Accuracy as a function of the number of examples in the training set for the

Sudoku problem.

In Figure 4.5, we observe that the accuracy increases with the number of examples.

At 75 examples, the measured accuracy is close to 0.5, which means that the number

47

4.4. Ezxperimental Evaluation

80
70
60
20
40 A
30
20 A
10

—e— Constraints not in target network

Number of Constraints

50 75 100 125 150 175 200
Number of examples

Figure 4.6: Number of constraints learned that are not in the target network as a function

of the number of examples in the training set for the Sudoku problem.

of examples is too small to allow our method to learn a network capturing the
problem. From 75 to 120 examples, the accuracy increases up to 0.95. From 120
to 170 examples, the accuracy slowly increases up to 1. This evolution is explained
by analyzing the number of constraints learned that are not in the target network,
as shown in Figure 4.6. A 9 x 9 grid contains 3,240 distinct binary scopes without
permutation (sets of two variables), each representing a potential constraint scope.
The target Sudoku constraint network consists of 810 constraints in total out of these
3,240 possibilities. There does not exist any redundant binary disequality constraint
that can be added to the target network without removing a solution (in contrast
to the Jigsaw Sudoku problem, where redundant constraints can be added to the
target network). Thus, the target constraint network is the largest (in terms of
the number of constraints) possible constraint network that can be learned for the
Sudoku problem using only the binary disequality relation. Figure 4.6 shows that the
number of constraints learned that are not in the target network decreases rapidly
from 81 at 50 examples to only 1 at 120 examples, reaching zero at 170 examples.
This indicates that the learned constraint network becomes equivalent to the target
network when |E| > 170.

Notably, over 99.97% of the scopes not in the target constraint network are
eliminated using only 120 examples. Then, 50 additional training examples are then
needed to reach 100% accuracy, and eliminate the last remaining scopes not in the

target. The slowness in gaining the last percentage points of accuracy is explained

48

Chapter 4. Learning over Unknown Constraint Languages

by the fact that our method maximizes the number of constraints in the network,
which leads to the inclusion of some erroneous constraints. These constraints can
only be ruled out by a positive example that contradicts them. This is why the
accuracy does not reach 100% until 170 examples, even though a constraint network
very close to the target network in terms of accuracy and of constraints learned is

learned with 120 examples.

A way to address this issue is to change the maximization criterion to a minimiza-
tion one, which would lead to a network with the minimum number of constraints
that is consistent with all examples. However, this approach has its own limitations.
To demonstrate the shortcomings of simply changing the maximization criterion to a
minimization one, we conducted an additional experiment on the Sudoku problem.
The issue with the minimization approach is that it results in a network with an
insufficient number of constraints compared to the target network. In our exper-
iment, we analyzed the learned networks for various training set sizes from 10 to
200 examples, with |E™|/|E| = 0.5 for all training sets. For each value |F|, we run
our method 5 times on samples of |E| randomly generated examples. For the range
before 130 examples (10-130), by steps of 10, we compared how often the target
language was learned using either the maximization or the minimization criterion
across 5 runs for each training set size. The results are shown in Table 4.3. For values
of |E| greater than or equal to 130 examples, we vary the number of examples by
steps of 5, and we report the average accuracy of the 5 learned constraint networks
in Figure 4.7 and show the average total number of constraints learned in Figure 4.8
using the minimization criterion. The results are compared to the maximization

criterion, which is shown in Figure 4.5 and Figure 4.6.

|E| 10 20 30 40 50 60 70 80 90 100 110 120 130

Maximization 0/5 0/5 0/5 0/5 3/5 4/5 4/5 5/5 5/5 5/5 5/5 5/5 5/5
Minimization 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 2/5 3/5 4/5 5/5

Table 4.3: Number of times out of 5 runs the target language (I' = {#}) is learned with

maximization vs. minimization for different training set sizes |E|.

Table 4.3 shows that the target constraint language is never learned with the
minimization criterion for training sets smaller than 100 examples. The target

language is learned in only 2 out of 5 runs with 100 examples and in 3 out of 5 runs

49

4.4. Ezxperimental Evaluation

with 110 examples. It is only with 130 examples that the target language is learned
in all runs. On the other hand, with the maximization criterion, the target language
is learned in all runs for all training set sizes with only 80 examples and 3 out of 5
runs with 50 examples. This shows that the maximization criterion is much more
effective than the minimization criterion for learning the target constraint language

in the Sudoku problem.

1.0 A
0.9 1
0.8 1
0.7 1
06 4 0 o s A A A aAa—a——A
0.5 1
0.4

Accuracy

—— Accuracy with minimization

T T
150 175 200
Number of examples

Figure 4.7: Accuracy as a function of the number of examples in the training set for the

Sudoku problem when the maximization criterion is changed to a minimization criterion.

50
ks
= 40
%
g 30 - MMM
@) g
L‘S 20 _
g
g 10 +
g —o— Constraints with minimization
0

T T
150 175 200
Number of examples

Figure 4.8: Number of constraints learned in total as a function of the number of examples
in the training set for the Sudoku problem when the maximization criterion is changed to

a minimization criterion. The target network has 810 constraints.

We observe in Figure 4.7 that the accuracy is very low compared to the accuracy

50

Chapter 4. Learning over Unknown Constraint Languages

obtained with the maximization criterion. The accuracy is around 0.6 for all values
of |E| and does not reach 1 even with 200 examples. This is because the learned
constraint network does not capture the problem well, as shown in Figure 4.8. The
number of constraints learned is very low, and even with 200 examples, it is only
38 on average. The network learned is very loose and does not capture the problem
well. This illustrates how unsatisfactory it is to use a minimization criterion. Indeed,
the target constraint network has 810 constraints, and the learned network with the

minimization criterion has only 38 constraints on average.

4.5 Limitations and Perspectives

The experimental results are promising, but they also reveal several limitations of the
current approach. In this section, we analyze these limitations and outline potential

directions for future research that aim to overcome them.

4.5.1 Lack of Structure

A fundamental limitation of our current approach lies in how it handles constraint
scopes. The model is agnostic to any underlying structure in the set of scopes
where constraints apply. It treats every possible tuple of variables of arity r as an
independent candidate scope, simply learning a list of scopes to which the relations
in the learned language should be applied. This leads to a failure to capture the
high-level structure inherent in problems. We believe that the fairly large number of
examples sometimes required to gain the last percentage points of accuracy is largely

due to this limitation.

The model does not recognize that certain scopes of variables are more relevant
than others based on their positions or relationships within the problem domain.
For instance, in the Sudoku problem, the disequality constraints are not applied to
random pairs of variables. They are applied systematically to all pairs of variables
within the same row, column, or 3 x 3 block. Our model does not recognize the
concept of a row; instead, it must learn each individual scope (e.g. (211, %12) then
(z11,713), and so on) independently. This lack of a higher-level understanding of
scope patterns is what may make it difficult to gain the last percentage points of

accuracy.

ol

4.5. Limitations and Perspectives

The key insight is that we need to move beyond a simple list of scopes and instead
learn a more structured representation of the arrangement of the scopes. The goal is
to capture the inherent structure of the problem in a way that allows the model to
generalize better and require fewer examples to achieve high accuracy. To address
this, the next chapter introduces a more advanced, structured representation called
a template. A template is composed of two core components. First, it includes a set
of attributes that describe the variables in the problem, such as their row index or
block index. Second, it contains a set of rules that define how constraints should be
applied based on these attributes. For example, a rule might state that a disequality
constraint should be applied to any pair of variables that share the same row index.
By learning compact templates, the model can effectively capture the structure of the
problem. This structured approach is expected to significantly reduce the number of
examples needed to achieve high accuracy, as it allows the model to generalize from

fewer instances by leveraging the inherent structure of the problem.

4.5.2 Interpretability of the Language

A core principle of our method is to search for the simplest language, which we
currently define by minimizing the maximum arity and the number of relations.
While effective, this definition is rudimentary as it does not account for the intrinsic
complexity or interpretability of the relations themselves. For instance, a language
with a single, highly irregular and randomly structured relation might be preferred
over a language with two simple, highly structured relations, even if the latter is

more intuitive and generalizable.

A promising direction for future research is to refine this notion of simplicity by
considering the descriptive complexity of the learned language relative to a set of
known, common relations. The idea is to favor new languages that can be constructed
from a basis of well-understood relations using a few elementary operations. Let us
consider a reference language I' containing common and well-understood relations
(e.g., equality, disequality, less than). Let € be a set of elementary set operations,

such as union (U), intersection (N), and set difference (\).

We define a recursive function #op(R,T', Q) that counts the minimum number of

operations from €2 needed to express the relation in R using the relations in I':

52

Chapter 4. Learning over Unknown Constraint Languages

0Oif ReT

op(RT,Q) ={ " , ,
mlnwEQ,R:w(R’l,Ré) 1+ #Op(R17 Fa Q) + #Op< 29 Fa Q)

To compute the “cost” of a constraint language L, we should not simply sum the
number of operations needed to compute the cost of each relation in L. Instead, we
compute the cost of a set of relations L = {Ry, ..., R,,} by considering the minimum
number of operations needed to express all relations together in L. This is because
the cost of a single relation does not capture the complexity of a language as a whole,
especially when relations can be interdependent or share common structures. We

prefer to have a bias for languages where relations build upon each other naturally.

Therefore, we define a cost of expressing a set of target relations L = {Ry, ..., R, }
from the reference language I' as the minimum number of operations needed to

construct the relations in L from the relations in I' and the operations in €:

m

COSt(L, I, Q) = min Z #Op(Rﬂ(i), Iy {Rﬂ(l), cey Rﬂ(i,l)}, Q)

reSym(n),we =1

This cost function encourages the reuse of intermediate relations, rewarding
languages that possess internal structure. Integrating such a cost function into an
objective may allow the model to find a trade-off between an approach where the
language is predefined, and the fully flexible method presented in this chapter. It
would guide the search towards languages that are not only compact in size and arity

but also conceptually simple and interpretable.

4.6 Conclusion

This chapter introduced LFA, a new method for constraint acquisition that discards
the assumption that the target constraint language is known a priori by the oracle.
Our central contribution is a method that learns the language as part of learning the
model by jointly searching for a compact language (in terms of arity and number of
relations) and a set of scopes for each relation, which together describe a network

consistent with the training examples. We formalized the decision problem underlying

53

4.6. Conclusion

LFA and proved it is NP-complete. We then proposed an algorithm based on iterative
calls to a WEIGHTED PARTIAL MAX-SAT solver. We show that our method can
be applied to a wide range of problems such as Sudoku, Jigsaw Sudoku, Exam
Timetabling and Nurse Rostering. Finally, we analyzed in detail how the ratio of

positive to negative examples and the optimization criterion influence accuracy.

Our method demonstrates strong generalization capabilities, achieving high
accuracy with relatively small training sets. However, the last percentage points
of accuracy may demand disproportionately many examples; this calls for richer
notions of simplicity that capture some structure of the problem. In the next chapter,
we explore how to learn a constraint network considering an advanced notion of
simplicity in the arrangement of the scopes of constraints, which addresses one of

the main limitations of the current approach.

54

Chapter 5

Learning Compact Representa-
tions of the Scopes

There typically exist many constraint networks that are consistent with a
given training set, so the generalization ability of a constraint acquisition
system is critically dependent on its ability to determine which network
will generalize the best to unseen data. We introduce a framework
for representing constraint networks in compressed form and present a
novel method for constraint acquisition. Our method learns a constraint
network that achieves a high compression ratio, with the idea that such
networks are highly structured and therefore less prone to overfitting.
Experiments demonstrate that this approach significantly reduces the
number of examples needed for training and achieves a high accuracy on

unseen data.

This chapter is primarily based on the paper accepted for pub-
lication in the Proceedings of the 28th European Conference
on Artificial Intelligence (ECAI-25).

Contents
5.1 Introduction 0. 56
5.2 Compact Representations 58
5.3 Learning Templates 62
5.3.1 Overview 62

5.3.2 The Procedure SaturateWithNewRules 63

5.1. Introduction

5.3.3 The Procedure GuessAttributeWidth 64
5.3.4 Termination, Correctness and Complexity 66
54 TheModel 70
5.5 Experimental Evaluation 75
5.5.1 Implementation Lo 75
5.5.2 Benchmark Problems 76
5.5.3 Accuracy and Equivalence 78
5.5.4 Learned Attributes 81
5.6 Perspectives. i i it e e e e e e e 86
5.6.1 Generalization to Other Instances 86
5.6.2 Better Interpretability 87
57 Conclusion00 0o i e 88

5.1 Introduction

The previous chapter introduced LFA, a method that successfully removes the
need for a predefined constraint language by learning it alongside the constraint
network. However, as discussed in its limitations (Section 4.5), this approach has
a fundamental weakness: it is agnostic to any underlying structure in the set of
scopes where constraints are applied. LFA learns a simple, flat list of scopes for
each relation of the learned language. By failing to recognize high-level patterns,
LFA may learn a network that overfits the training set, requiring a large number of

examples to correctly discard all spurious constraints.

This chapter addresses this challenge and proposes that learning a more compact
representation of the constraint network is key to better generalization to unseen
assignments. Instead of learning an explicit, flat list of constraints in extension, we
aim to learn a model that captures the underlying structure of the problem. We
hypothesize that a model that can express patterns like “apply a constraint to all
scopes of variables in the same row” will be more robust, less prone to overfitting,

and more interpretable.

56

Chapter 5. Learning Compact Representations of the Scopes

To achieve this, we first introduce a novel representation, which we call templates,
that can capture some structured constraint networks. A template associates each
variable with a set of attributes and contains a set of rules, which produce constraints
based on these attributes. Each individual rule has the potential to generate many
constraints at once. We then describe a framework that learns such a template
directly from examples (rather than an explicit constraint network) with a two-
step acquisition pipeline. First, a baseline acquisition method is used to learn an
initial network that is consistent with the training data but may be overly specific.
Second, our core contribution is an algorithm that refines this network with heuristics
devised to output a template that contains few rules and attributes, but that remains
consistent with the examples. We run experiments on a wide array of benchmarks
and show that combining LFA with our template-based algorithm yields constraint

networks that have a higher generalization ability.

Closely Related Work. The idea of templates is conceptually similar to other
intermediate representations of learning approaches in the literature. COUNT-
CP [21] and URPILS introduced in Chapter 2 learn first-order logic constraints.
The method presented in [23] uses a rule-based language using Inductive Logic
Programming. GENCON learns parameterized constraint models (i.e. capable of
modeling varying instances of the same problem) from existing instance-specific
models [41]. The method learns a classifier that predicts whether a candidate
constraint, parameterized by some parameters, belongs to the target constraint
network or not. The method extracts interpretable decision rules from the classifier
to construct constraint specifications that can generate a constraint network for
any specific problem instance. This allows GENCON to learn constraints that are
applicable to different instances of the same problem without needing to redefine

them for each instance.

A crucial distinction, however, is that these existing approaches require the
relevant properties to be provided as part of the input. For instance, they may need
predefined variable partitions, features, or relations between variables. In contrast,
our framework is designed to learn both the attributes and the rules that rely on
them simultaneously from the raw examples. We introduce the specific structure of
templates, which allows us to formulate this joint learning problem as a series of CP

optimization models.

57

5.2. Compact Representations

The rest of this chapter is organized as follows. Section 5.2 introduces templates
as a means to represent constraint networks concisely. Section 5.3 describes our
algorithm for learning templates from examples. Section 5.4 details the Constraint
Programming models used as subroutines within our learning algorithm. Section 5.5
presents our experimental evaluation, comparing our approach to LFA. Then, Sec-
tion 5.6 discusses future work and research directions. Finally, Section 5.7 concludes

and discusses future research directions.

5.2 Compact Representations

In this section, we introduce a new compact representation of constraint networks
and generalize the constraint acquisition task with this new representation. Our
representation is based on the observation that many constraint networks can be
efficiently represented using a rule-based formalism, where variables are labeled
with attributes and constraints are applied to sequences of variables if and only
if their attributes follow certain rules. For example, attributes may correspond to
coordinates in a matrix (as in the usual constraint programming model of Sudoku)
or specify the type of a variable (day, teacher, room, etc.). In our framework, an

attribute is simply a mapping that assigns natural numbers to variables.

Definition 10 (Attribute). Given a set of variables X, an attribute ¢ over X is a
function ¢ : X — N.

The width of an attribute ¢ is the maximum value of its range and is denoted
by w(¢). Given a sequence of attributes ® = (¢1,...,¢,,) over X, we denote
w(P®) = (w(¢1),...,w(pm)). Given a constant w € N and a set of variables X, we
denote w* the attribute ¢ such that Vo € X, ¢(z) = w (all variables have the same

attribute value w).

Definition 11 (Rule). Given a set of variables X and a sequence of attributes
O = (¢1,...,0m) over X, a rule over ® is a triple (R, J, f) where R is a relation
of arity r, J is a sequence of pairs (i,k) from {1,...,m} x {1,...,r} called the
selector, and f is a function f : NI — {0,1} called the trigger. Given a scope
S = (z1,...,x.) € X" without repetition, we say that the constraint (R,S) is
produced by the rule iff f((¢:(S[k]))ryes) = 1.

58

Chapter 5. Learning Compact Representations of the Scopes

For clarity, we will slightly abuse notation by writing selectors for a given scope
(21,22, ...) as (¢, xx) instead of (i,k) to make explicit which attribute and which
variable are being referenced. Intuitively, a rule (R,J, f) acts as a conditional
generator of constraints: it specifies when a relation R should be applied to a scope
of variables. The sequence J selects which attribute-variable pairs to examine, and
the trigger function f determines whether the constraint should be produced based

on the selected attributes and variables.

Definition 12 (Template). A template T is a quadruple (X, D, ®, P) where X is a
set of variables over the domain D, ® is a sequence of attributes and P is a set of

rules.

We denote P(T') the set of rules of a template T. The interpretation of a
template "= (X, D, ®, P) denoted N(T') is the constraint network (X, D, ') such
that (R,S) € C iff (R,S) is produced by a rule in P. The interpretation of a
specific rule (R, J,) within a template 7" is denoted N (T, (R, J, f)) and is defined as
N(X,D,®,{(R,J, f)})). We denote T'+ (R, J, f) the template obtained by adding
the rule (R, J, f) to T, and we denote T' 4+ ¢ the template obtained by adding the
attribute ¢ at the end of the sequence of attributes of T

Example 5.2.1 (Sudoku). Let us consider a basic constraint network for the
Sudoku problem with 81 variables X = {xz;; |i,j € [1,9]} of domain D = [1,9].
The constraints impose that every pair of variables in the same row (that is,
sharing the same index i), same column (same index j) or 3 X 3 square must be

different. This network has a very concise representation as a template.

First, we define three attributes for each cell variable x: its row index ¢, its
column index ¢o, and its square index ¢3. All three attributes range from 1 to 9.
We can generate all constraints with three simple rules, each applying to distinct

pairs of variables (z,).

Row Rule: (Ry, ((¢1,%w), (¢1,20)), f) with f(a,b) =1 < a =0b. The selector
(1, z4), (¢1,y)) indicates we compare the first attribute (row) of both variables
(i.e. d1(xy) and ¢1(x,)). The trigger function f returns True iff the two observed
attributes are equal. This rule produces the constraint (#, (zy, x,)) iff ©, and x,

belong to the same row.

59

5.2. Compact Representations

60

Column Rule: (R4, ((¢2,x4), (92, y)), f), where the trigger function f is the
same as the row rule. This rule produces the constraint (#, (xy,x,)) iff ©, and

x, belong to the same column.

Square Rule: (Rz, ((¢3, Tu), (@3, 20)),), again with the same trigger function
f. This rule produces the constraint (#, (xy,x,)) iff ©, and z, belong to the

same 3 X 3 square.

Thus, a template with just three attributes and three rules is sufficient to
generate the entire Sudoku constraint network. This representation of the Sudoku
model as a template is not unique. For example, an alternative template would
only contain the first two attributes (row and column) but use a more intricate

trigger for the third rule:

f3(d1(z4), d1(x0), P2(T0), P2(20)) = 1

—

(il e 1 G R

with selector J3 = ((¢1, Tw), (1, %0), (P2, Tu), (2, 24)).

Example 5.2.2 (Nurse Rostering). Let us consider a constraint network for a
Nurse Rostering problem. An instance of this problem is defined by a number
of days dyaz, Shifts per day Smaz, Slots per shift kpae, and number of nurses
Nmaz- Given an instance (dpmaz, Smazs kmaz), @ basic network consists of dpaz X
Smaz X kmaz variables X = {xqsr | d € [1,dmaz), s € [1, Smaz), k& € [1, kmaz)} Of
domain D = [1, Nyas] each representing a slot that can be filled by a nurse. If
an assignment gives the value n to a variable xqsy, it means that nurse n is
assigned the s shift on day d. The constraints are of two main types: no nurse
works two slots on the same day (intra-day), and no nurse works the last shift
of one day and the first shift of the next (inter-day). A template can represent

this network compactly.

First, we define two attributes for each variable 4 k: Gday(Task) = d, and
its shift, Gsnife(Tasy) = s. We can generate all constraints with two simple rules,

each applying to distinct pairs of variables (x,,x,).

Chapter 5. Learning Compact Representations of the Scopes

Intra-Day: A rule (Rz, ((Pday, Tu)s (Pday, Tv)), f1) produces a disequality re-
lation (R.) constraint between any two slots (x1,x2) if their day attributes
are identical (((Pday, 1), (Pday, T2)) indicate that we only consider the first at-
tribute of both variables, which is the day attribute). The trigger for this rule is
fi(dy,d2) =1 & dy = ds.

Inter-Day: A second rule (R, J, f2) produces a (R, (xy,,)) constraint if
Xy 18 in the last shift of one day and x, the first shift of the next. The selector J
15 ((Pday, Tu)s (Pdays To)s (Gshift, Tu)s (Pshift, Tv)) indicates that we consider both
attributes of both variables, and fao(dy,da, s1,82) =1 < (de =dy + 1) A (51 =
Smaz — 1) A (s2 = 0).

As Example 5.2.1 illustrates, multiple templates can represent the same constraint

network. If only the attribute values change, we say that the templates are equivalent.

Definition 13 (Template equivalence). Two templates Ty = (X, D, ®1, P;) and
Ty = (X, D, ®y, P,) are equivalent, denoted Ty = T, iff:

o P, = P, (identical rules);

o w(Py) = w(Py) (identical attribute widths);

e Y(R,J, f) € P,N(Th, (R, J, f)) = N(Tz, (R, J, f)) (each rule produces identical

constraints).

For instance, permuting the row indices in the first template of Example 5.2.1

will always result in an equivalent template.

We now extend constraint acquisition to template-based representations. A
template T' is consistent with a set of examples E if its interpretation N(7T) is
consistent with E. Given a training set £ over (X, D), the task of constraint
acquisition using templates is to learn a template that is consistent with E. Note

that learning a template requires learning not only rules, but also attributes.

In general, there always exists a template consistent with any given training
set. However, some of these templates are clearly unsatisfactory from a practical
point of view; for example, the template might contain as many rules as there are
constraints in its interpretation. Instead, we will try to learn templates that are fairly
compact (in particular, we impose that each rule produces a significant fraction of
the constraints) and that rely on trigger functions with interpretable semantics (e.g.
based on integer comparisons and other basic arithmetical relations). We present

our approach in the next section.

61

5.3. Learning Templates

5.3 Learning Templates

Given a training set E over (X, D), our goal is to find a template T that is consistent
with E. We propose a two-step approach. First, we use a constraint acquisition
method that tends to learn very dense networks to learn an initial constraint net-
work N consistent with E. Second, we learn a template consistent with £ whose
interpretation is a subset of the network NN learned in the first step. This section

details the algorithm for this second step.

5.3.1 Overview

Our algorithm takes three inputs: a training set E, an initial constraint network
N consistent with E and a trigger language A. The network N must be consistent
with the training set E, and it provides a superset of constraints from which the
template will be constructed. The trigger language A is a set of functions that can
be used as triggers in the rules. Algorithm 1 describes our algorithm for learning a
template. It starts with an empty template (line 1) and greedily learns new attributes
and rules (lines 3-10) until the interpretation of the template is consistent with the
training set. The process to add new rules (SaturateWithNewRules) to the template
is described in Section 5.3.2 and the process to guess a suitable width for a new
attribute (GuessAttributeWidth) is described in Section 5.3.3.

Bear in mind that we aim to learn highly compact templates, i.e., templates that
produce many constraints using few attributes and rules. For this reason, we do
not allow the addition of arbitrary rules or attributes. Instead, we define a set of
admissible new rules (Section 5.3.2) and a heuristic to determine a suitable width
for new attributes (Section 5.3.3). We use a parameter « that controls the minimum
number of new constraints that must be produced by a new rule and update it
dynamically to allow the search to explore more complex templates as needed. In
each iteration of the loop, the algorithm adds a new attribute if a suitable one exists
(line 6). (We recall that given a constant w € N and a set of variables X, wX denotes
the attribute ¢ such that Vx € X, ¢p(x) = w. This attribute is added at the end of the
sequence of attributes of T and is then used in the next line as a new attribute of
width w.) Whenever a new attribute is added, the algorithm updates the template

with new rules greedily until it is no longer possible to find a new admissible rule (line

62

Chapter 5. Learning Compact Representations of the Scopes

Algorithm 1: Learning a template

Input: A training set F; a constraint network N = (X, D, (') consistent
with F; a set of triggers A.
Output: A template 7" such that N(7') C C and N(T) is consistent with E.

1 T+ (X,D,0,0);

2 a <+ 0.3;

3 while N(T) is not consistent with E do
4 w <— GuessAttributeWidth(T, N, A, a);
5 if w > 0 then

6 T+ T+ (w*)¥;

7 T <+ SaturateWithNewRules(T', N, A, a);
8 if N(T') is not consistent with E then

9 a <+ ax0.9;

10 T < SaturateWithNewRules(T', N, A, a);

11 return 7T’

7). The algorithm then checks if the interpretation of the template is consistent with
the training set F (line 8). If the template is not consistent with E, the parameter
a is decreased (line 9). The algorithm then attempts to update the template with
admissible rules again (line 10). If 7" is still not consistent with F, the algorithm
goes into the next iteration of the main loop; otherwise, the termination condition is

met and the algorithm returns 7" (line 11).

5.3.2 The Procedure SaturateWithNewRules

To promote compactness and ensure correctness, we only accept admissible rules

that produce more than a given number of new constraints.

Definition 14 (Admissible rules). Given a template T, a constraint network N =
(X,D,C), a set of triggers A, and a real lb, the set Adm(T, N, A, lb) consists of all
rules (R, J, f) such that:

o f € A: the trigger f is a member of the set of triggers A;
o« N(T,(R,J,f)) CC: constraints produced by the rule are in C;

63

5.3. Learning Templates

o |[N(T,(R,J, f))\ N(T)| > lb: the rule produces more than lb new constraints.

If we restrict the algorithm to add rules to the current template without flexibility,
this prevents the discovery of certain rules that could become admissible with different
attribute value assignments. To illustrate this limitation, consider a timetabling
problem where an attribute representing days is learned first. Initially, days might
be assigned arbitrary numerical values (e.g., Dayl = 3, Day2 = 1, Day3 = 2) based
on a rule that only requires variables to be scheduled on the same day. If we later
need to add a rule requiring constraints between consecutive days (Dayl before
Day2, Day2 before Day3), the arbitrary initial numbering would make this rule
inadmissible. To overcome this, we consider all admissible rules that can be added
to any equivalent template (Definition 13) and formalize it through the concept of

admissible rules modulo equivalence.

Definition 15 (Admissible rules modulo equivalence). Given a template T, a
constraint network N, a set of triggers A, and a threshold b, AdmEq(T, N, A,lb) is
the set of tuples (T', R, J, f) such that T" =T and (R, J, f) € Adm(T’, N, A, lb)

Algorithm 2 describes how we add rules to a template 7. It iteratively adds
admissible rules modulo equivalence that produce the maximum number of new
constraints, replacing at each iteration the template with an equivalent one if needed.
The minimum number of new constraints [b required for a rule to be admissible is
defined as b = a x [N(T)|/|P(T)| (with |N(T)| the number of constraints in the
interpretation of 7" and |P(T")| the number of rules in T') when |P(7T)| > 0, and
[b = 0 otherwise. This threshold ensures that the new rule achieves a compression
ratio comparable to the average of existing rules in the template. We recall that « is
updated dynamically in the main algorithm (Algorithm 1) to relax the threshold for
admissibility when the template is not consistent with the training set. Algorithm
SaturateWithNewRules terminates when no admissible rule can be added to the
template, i.e., when AdmEq(T, N, A,lb) = 0.

5.3.3 The Procedure GuessAttributeWidth

In each iteration of the main loop, Algorithm 1 attempts to add a new attribute
to the template. When adding this attribute, a key difficulty is to find a suitable

64

Chapter 5. Learning Compact Representations of the Scopes

Algorithm 2: SaturateWithNewRules(T', N, A, «):
Input: A template T'; A constraint network N = (X, D, C); a set of triggers

A; a real o.
Output: An updated template with new rules added.

IN(T)| .
max([P(T)[,1)’

while AdmFEq(T, N, A,1b) # 0 do
(TR f) e argmax (N (R)] = IND)]);

1lb+ ax

N

3
(T",R,J,f)€ AdmEq(T,N,A,lb)
4 T+ T+ (R,J[)
IN(T)].
5 b+ ax Gk

6 return 7’

width w* that balances the need for expressiveness with the goal of keeping the
template compact. In our algorithm, we set the possible widths to be 0 < w < | X].
Let cov(w, T, N,A) denote the maximum number of constraints that can be newly
produced by a new rule when adding an attribute of width at most w:

coulw, T, N, A) = max (1N + (R, £)] = IN(T)))

w' <w
(T'",R,J,f)€AdmEq((T+(w’)X),N,A,0)

Algorithm 3: GuessAttributeWidth(7, N, A, «)
Input: A template T; a constraint network N = (X, D, C); a set of triggers

A; a real a.
Output: The optimal width w* for a new attribute, or —1 if no admissible

attribute exists.

COVpaz <— cov(| X | — 1, T, N, \);

IN(T) .
2 [b+ ax max (PO

3 if cov,,q. > (b then

[uny

w* < argmax (cov(w,T, N,A) — ﬁ . COUmax);

4
0<w<|X]|
cov(w,T,N,A)>lb
5 return w*;

6 return —1;

65

5.3. Learning Templates

For notational clarity, in the following discussion we omit the parameters T,
N, and A from the function notation of cov(w,T, N,A) as they are fixed during
the process of adding an attribute, i.e., cov(w) = cov(w, T, N,A). As w grows
from 0 to |X| — 1, the function cov(w) is non-decreasing but will typically grow
in a non-linear fashion. Assuming the data contains a hidden feature, we may
expect that cov(w) grows quickly as w approaches the width of that feature and
slowly afterwards. We propose the mazimum cover above expectation (MCAE) as a
heuristic criterion for determining when that happens. For 0 < w < |X|, let covy, (w)
denote the approximation of cov(w) obtained by linear interpolation between 0 and
| X| — 1, i.e. covn(w) = cov(0) + w - (cov(|X| — 1) — cov(0))/(|X]| — 1). If cov
grows unexpectedly fast when approaching a value w’ and slowly between w’ + 1
and | X| — 1, then the gap cov(w’) — covy,(w') will be large. Therefore, if we return
w* = argmax(cov(w) — covy,(w)), we have an increased chance of returning the
domain size of a hidden feature.

In order to make progress, we impose that a new attribute makes it possible to
add at least one new admissible rule. This translates into a constraint cov(w*) > b,
with [b being the lower bound on the number of new constraints produced by a rule
described in the previous section. Computing the optimum value w* for the above
criterion requires solving three optimization problems: two for computing cov(0) and
cov(|X| — 1) and then one for computing w*. In order to avoid computing cov(0),
we crudely approximate it with 0. The complete procedure to compute the optimum
width w* is described in Algorithm 3.

5.3.4 Termination, Correctness and Complexity

We begin by establishing that Algorithm 1 is guaranteed to terminate and produce a
template that is consistent with the training set £’ under certain mild conditions. For
any integer r > 1, let fI : N" — {0, 1} be the function given by fI, (a1, as,...,a,) =

suc

le(@m+1=a) A(aa+1=as)A\---A(a,—1 +1=a,). We call fI . the successor

suc

function of arity r.

Proposition 2. Algorithm 1 is guaranteed to terminate and return a template

r

T 15 in A for all v such that N contains a constraint of arity

consistent with E if
r, and N contains at least Tyqe + 2 variables with 1., the maximum arity of a

constraint in N.

66

Chapter 5. Learning Compact Representations of the Scopes

1,000 |-

500 |-

— cov(w)

- == covp (w)
| | | | T T

l
0 2 4 6 8 10 12 14 16 18 20

Figure 5.1: Illustration of the MCAE heuristic with a hypothetical cov(w) and its linear
expectation covyy, (w). The optimal width w* is chosen at the point where the gap between
the actual cover cov(w) and the linear expectation covy;,(w) is maximized (indicated by
the teal double-headed arrow).

Proof. Correctness is immediate as Algorithm 1 can only exit (or skip) the main
loop if N(T') is consistent with E.

For termination, the loop in Algorithm 2 can only iterate at most |C| times
in total (where C' is the set of constraints in V) because an admissible rule must
produce at least one new constraint in N. In addition, the parameter «a strictly
decreases at each iteration of the main loop. Eventually, any rule producing at least

one constraint from N \ N(7') becomes admissible.

Consider a constraint (R, (x1,...,x,)) of arity r in N but not already in N(T').
We show that a rule producing only this constraint always exists provided A contains
the successor function of arity r and a new attribute ¢; of width r + 1 can be
introduced at line 6 (which is guaranteed by our assumption that |X| > r +2). We
set ¢i(z1) =0, ¢i(x2) =1, ..., ¢i(x,) =r—1, and ¢;(y) = r+1 for all other variables
y. The rule (R, ((¢i, x1), (¢, 22), ..., (¢is xr)), fhe) Produces (R, (xy,...,2,)) and no
other constraint. We intentionally do not use the value r in the new attribute for
any variable. This ensures that no other scope of r variables can form a consecutive

sequence of attribute values.

It follows from the argument above that each iteration of the main loop of
Algorithm 1 will add at least one new constraint to N(7") once the threshold becomes
strictly below 1. Together with the invariant N(7T)) C N and the fact that N is
consistent with F, this implies that N(7") will eventually be consistent with F as

67

5.3. Learning Templates

well. At this point, the algorithm will exit the main loop and return 7' O

Now, we show that the problem of determining whether AdmEq(T, N, A, [b)
is non-empty is NP-hard. This justifies our decision to employ a CP solver for
computing the admissible rules. Let ® be the set of all attributes in the template T'.
We represent each trigger function f; € A of arity r as the list of tuples subset of
[0, w(®)]" for which f; returns 1. Since any equivalent template 7" with attributes
O’ must satisfy w(®’) = w(P) (by Definition 13), it suffices to consider only tuples

within the domain [0, w(®)]” when encoding trigger functions.

Theorem 3. Given a template T, a constraint network N, a set of triggers A, and
a threshold Ib, the problem of determining whether AdmEq(T, N, A, 1b) is non-empty
is NP-hard.

Proof. The decision problem can be stated as follows:

o Input: A template T' = (X, D, ®, P), a constraint network N = (X, D, (), a
set of triggers A, and a real number [b.

e Question: Does there exist a tuple (7", R, J, f) such that 7" = T and
(R, J, f) € Adm(T', N, A, 1b)?

We prove NP-hardness by a reduction from the CLIQUE problem, which is
known to be NP-complete. Given a graph G = (V, E) and an integer k > 1, the
CLIQUE problem asks whether there exists a subset of vertices of size k such that
every pair of vertices in this subset is connected by an edge in F (a clique). Given
a CLIQUE instance (G, k), we construct an instance of our decision problem as

follows:

e T=(X,D,®,P)is a template where X =V U {v,} (i.e. the set of variables
plus a special variable v,), D = {0}, ® = (¢;) such that Vv € X, ¢;(v) =1
(w(¢p1) =1), and P = .

« N = (X,D,C) is a constraint network where X = V U {v,}, D = {0}, and
C = {(EDGE, (u,v)) | {u,v} € E} where EDGE is the relation that rejects all
tuples.

o A ={fsorm}, where fuori(a,b) =1 if and only if (a,b) = (1,1).

e Ib=Fk(k—1)—1.

This construction can be done in polynomial time. We now show that GG has a

clique of size k if and only if AdmEq(T, N, A, [b) is non-empty.

68

Chapter 5. Learning Compact Representations of the Scopes

Assume G has a clique V' C V with |V’/| = k. We construct a valid solution
(T".R,J, f). Let ¢ : V.— {0,1} be an attribute defined as ¢}(v) = 1 if v € V'
and ¢/ (v) = 0 otherwise. This implies that ¢} (v,) = 0. Let T" = (X, D, (¢}),0).
T" is equivalent to T because P is empty and w(¢}) = w(¢;). Consider the rule
p = (EDGE,((1,1),(1,2)), faoru1)- The set of constraints produced N(1",p) is
the set {(EDGE, (u,v)) | ¢j(u) = 1and ¢j(v) = 1}. This is precisely the set
{(EDCE, (u,v)) | (u,v) € (V')%,u # v}. Since V' is a clique, for any distinct pair
(u,v) of V', the edge {u,v} is in E. Thus, N(7",p) C C. The number of constraints
produced |N(T",p)| is k(k — 1) which is greater than b = k(k — 1) — 1. Therefore,
p € Adm(T', N, A\, 1b), and AdmEq(T, N, A,[b) is non-empty.

Assume AdmEq(T, N, A, 1b) is not empty, and let (7", R, J, f) be a tuple in the set.
We show that this implies that G has a clique of size at least k. 7" = (X, D, (¢}),0)
must be equivalent to T, so w(¢}) = 1. This attribute ¢} : V' — {0,1} defines a
subset of vertices V' = {v € V' | ¢|(v) = 1}. The input constraint network N is over
the language {EDGE}, thus R must be EDGE. A contains only fyoru1, S0 f must be
fsorn1, and V' cannot be empty because |[N(T", R, J, f) \ N(T")| > [b implies that
the rule (R, J, f) produces at least one constraint with the trigger fyorui. J must
be a pair of pairs from {(1,1),(1,2)} as there is only one attribute and EDGE is
a binary relation (|J/| is equal to the arity of EDGE, which is 2). By construction,
for any variable v € X, there is no constraint (EDGE, (v,v,)) or (EDGE, (v4,v)) in
C'. Thus J cannot be ((1,1),(1,1)) or ((1,2),(1,2)) as these would produce for any
variable v" € V' a constraint (EDGE, (v/,v,)) which is not in C'. The only choices for
Jis ((1,1),(1,2)) or ((1,2),(1,1)). As EDGE is a symmetric relation, we assume
J =1((1,1),(1,2)) without loss of generality. The set of constraints produced by the
rule N(T”, (EDGE, ((1,1),(1,2)), faorn1)) is {(EDGE, (u,v)) |u € V', v € V', u # v}.
This means that for every pair of distinct vertices (u,v) in V', the edge {u,v} must
be in E. Thus, V' is a clique in G. The condition |N(7",p)\ N(T")| > Ib implies that
the number |V'|(|V’| — 1) of pairs of distinct vertices of V' is greater than k(k — 1).
The existence of such a rule thus implies the existence of a clique of size at least k in
G. O

69

5.4. The Model

5.4 The Model

This section details the CP models used to solve the optimization subproblems of our
learning algorithm: finding an optimal new attribute width (line 4 of Algorithm 3)
and the most impactful new rule (line 3 of Algorithm 2).

Our models assume that the trigger language A is composed of all functions
expressible as the conjunction of two elementary binary Boolean functions taken
from a base set A’. (This is the setting we chose for our experiments, see Section 5.5
for more details.) We represent a rule over A as a tuple (R, Ji, f1, Jo, f2), where
fi, f2 € A and Jy, Jo are the attribute selectors for f; and fy, respectively. The

rule produces a constraint (R, S) if both trigger functions evaluate to True, i.e., iff
Fi((@i(STRD)) imen) = 1 and fo((:i(SK])) i kyes) = 1.
The CP model searches for a rule of this kind and (optionally) a new attribute

Onew- For the remainder of the section, let:
e T=(X,D,®, F) be the current template with ® the set of existing attributes

and F the set of existing rules;

« N = (X,D,C) be the initial constraint network (over a constraint language I")

learned by the baseline constraint acquisition method;
o A’ be the language allowed for the trigger functions fi, fo in a rule;

o J be the set of all possible attribute selectors J = ((i1, k1), (i2, k2)) using
attributes from ® U {¢yey };

o (' be the set of constraints from the initial network N that are not yet

produced by the current template T,

« C_ be the set of constraints (R, S) (where S € X", R' € " of arity r) such
that (R',S) ¢ C. This is the set of constraints that must not be produced by

any rule.
The variables of the model are:
o Attribute values: For each variable z € X:

— For each existing attribute ¢; € ®, an integer variable v, ; representing
¢i(z) of domain [0, w(¢;)].

70

Chapter 5. Learning Compact Representations of the Scopes

— For the new attribute ¢pew, an integer variable vy yey representing ey ()

of domain [0,n — 1].

New attribute width: An integer variable d representing the width of the new
attribute ¢pew. We set d € [0,n — 1] with n the total number of variables in the

network N. We add constraints to ensure v, new < d for each variable z € X.

New rule: Boolean variables to define the new rule (R, Jy, fi, J2, f2):

— Xg(R') for each R €T
— X7p1(f), Xpa(f) for each f € A
— X(J), Xjo(J) for each J € J.

We ensure that exactly one variable is true in each group (e.g., > prer Xg(R') =
1). We denote selected i (R', J1, f1) = Xr(R') AN Xp1(f1) A X1 (J1) and
selected jo(R', Jo, fo) = Xr(R') A Xp2(f2) A X ja(Jo) that indicate which rule is
currently selected for each possible (R, Ji, f1) € ' x A’ x J and (R', Js, f2) €
I'x A x J.

Constraints produced: For each target constraint (R,S) € C., a Boolean

variable c(g s) indicating whether the new rule produces this constraint.

We also define a helper predicate trigger(S,J, f) which evaluates to True iff:

F(@i (STR1]), - -, 6i, (SThe]))

where J = ((i1,k1), ..., (i, k) and the attribute values ¢;_(S[k,]|) correspond to the

value of vgik,) i, -

New constraints produced For each (R, S) € C, we force that ¢) is true
iff the new rule produces the constraint (R',S). For each rule part (J, f) € A’ x J:

cr,s) = —selected i (R, J, f) V trigger(S, J, f)
cr,s) = —selected (R, J, f) V trigger(S, J, f)

We do not have to ensure the opposite direction of the implication because it will be

implicitly enforced by the maximization objectives (described below).

71

5.4. The Model

Forbidden constraints For each forbidden constraint (R’,S) € C_ we introduce
a corresponding boolean variable (g g). Then, for each rule part (J, f) € J x A’ we
ensure that:

—selected (R, J, f) V —trigger(S, J, f) V tr.s)
—selected o (R, J, f) V —trigger(S, J, f) V —t(r s)

Existing rules For each existing rule (R, Ji, fi1, J2, f2) € F, and for every scope S
with arity matching R we ensure that trigger(S, Ji, f1) A trigger(S, Ja, f2) is True
if (R, S) is produced by the rule in the initial 7" and False otherwise.

Threshold and objective function As described in Section 5.3.2, we only seek
solutions in which the new rule produces a minimum number of new constraints.

Given the current value of o, we add:

Y. cws > ax |N(T)|/|F]
(R',S)eCy

The MCAE heuristic involves two optimization phases using this CP model.
During the first phase, we compute the maximum number cov(n—1) of new constraints
that can be produced if the width of the new attribute is at most n — 1. This is done

by maximizing

Y. s

(R',S)eC+
without additional constraints. During the second phase, we compute the width w*
for the new attribute that maximizes the MCAE criterion. For this, we use the

value cov(n — 1) calculated in the first phase and maximize

d
((Z C(R',S)) — ﬁ . COU(?’L — 1)

R'.S)eC+ o

The solution to this second CP model yields the optimal width d = w*, the variable-
value assignments for the new attribute ¢, (and potentially updated values for
¢; € ®), and the description of an admissible rule that produces that maximum

number of new constraints.

The CP model can be readily adapted for the task of adding a new rule without

introducing a new attribute (line 3 of Algorithm 2). This is achieved by removing all

72

Chapter 5. Learning Compact Representations of the Scopes

variables and constraints related to ¢,e, and using the objective function of the first

phase (maximization of newly produced constraints).

Example 5.4.1 (Illustrative Example). Consider a 2 x 2 grid with variables

X = {x1, 9,23, 24}, where x1, x5 are the first row and x3, x4 are the second row.

Suppose the initial baseline network N contains the binary difference constraint
(#) on all pairs in the same row: {(x1,x2), (e, x1), (T3, x4), (T4, x3)}. We start
with an empty template T and want to find a new attribute ¢ne, and a rule to

cover these constraints. Let N' = {=,#}.
The CP model variables are defined as follows:

« Attribute values and width. Integers {v., news Vg news Vas.news Vag.new
with domain [0, 3]. Integer variable d € [0, 3].
e Rule Selection: Boolean variables to select the relation and function and
selector for both parts of the rule:
— Xg(#) since N only contains constraints with the # relation.
— Xp1(f), Xp2(f) with f the Boolean functions associated with the bi-
nary relations in {=,#}.
— X (J), X2(J) where J is a selector. Since we only have one attribute
Onew, the possible selectors are:
x Ja = ((new, 1), (new, 2))
x Jp = ((new,2), (new, 1))
x Jo = ((new, 1), (new, 1))
x Jp = ((new,2), (new,2))
In the following, we will focus on selector Ja for illustration which
refers to Gpew of the first and then the second variables considered.
« Coverage: Boolean variables ¢4 (s, ;) for each target constraint in N

not yet produced by T (here, all of them because T is empty).

The constraints of the CP model first ensure that d is the width of the new
attribute (Vr € X, Uy pew < d). The model also ensures that exactly one function
and one selector is chosen for each part of the rule (e.g., > Xy =1) and Xg(#)
is set to True (since we only consider the # relation here). Then, the key

constraints of the CP model are as follows:

New constraints produced. For target constraints like (#,(x1,2)), the

73

5.4. The Model

74

variable c(z (z, 2,)) must be True only if the rule produces it. For example,
considering the selector J4 and the Boolean function f— associated with =, we

have the implications:

C(?'é:(a:l,%?)) = _'(XR(#) A (XJI(JA> A\ Xfl (fz))) V (Uml,new = ng,new)
C(¢7($1,m2)) = _'(XR(%) A (XJZ(JA> A Xf2(f=))) V (Uml,new - ng,new)

Similar implications exist for other combinations of J and f. The interpretation
is that if the rule uses this relation/selector/function and the values match, then
the constraint can be produced. Because of the maximization objective, the solver

will try to make ¢ (x, 2)) true whenever possible.

Forbidden constraints. For pairs not in N (e.g. (#,(x1,x3))), the rule must
not produce it. We use auxiliary variables t to ensure the conjunction does not

produce it. For a specific combination as Ja and f—, we have:

_‘(XR(%) A (X1(Ja) A Xfl(f=))) \% _‘(U:rhnew = Ums,new) V b (£, (21,23))
_‘(XR(%) A (X g2(Ja) A Xf2(f=))) \% _‘(U:rl,new = Ums,new) V T (£ (21,23))

If the first part uses this selector/function and the values match, t becomes True.
If the second part does the same, t becomes False. Thus, they cannot both

“trigger”.
A possible solution is the following assignment:

o Values: vy, new = 0,055 new = 0, Vg new = 1, Uy new = 1. Width d = 1.

o Rule: Xp(#), X1(Ja), Xp1(=) and X j2(Ja), Xp2(=) all set to True (oth-
ers to False). Since our model requires a conjunction of two parts but we
only need one, we simply repeat the equality check in both parts with the

same selector.

The rule will produce all “row” constraints (e.g. Vg, new = Vagnew ONA Vg, pew =

Vs mew) and only them (since vy, new 7 Vs new)

Our method first mazimizes the number of covered constraints (which is 4 here)
without considering the width. Then, it maximizes the MCAE criterion to find
the best width.

Chapter 5. Learning Compact Representations of the Scopes

5.5 Experimental Evaluation

In this section, we evaluate our method (i.e the full framework including the baseline
acquisition method), that we denote TACQ, experimentally on several benchmark
problems. For each benchmark, we will compare the classification accuracy of the
interpretation of the template learned by our method and that of the network
obtained by the baseline acquisition method. We will then dive deeper into the
details, using the nurse rostering problem as an example, to assess the effectiveness of
MCAE for determining attribute widths and examine the structure of the template

learned by our algorithm.

5.5.1 Implementation

As the method used to generate the initial network, we could use any constraint
acquisition method, such as CONAcQ.1 [10,12] (with the most specific network
it suggests) or BAYESAcQ [35]. However, we naturally chose to use the LFA
method from Chapter 4, because it only needs a training set as input, whereas
both CONACQ.1 and BAYESACQ require background knowledge in the form of a
constraint language. This allows our full framework to only need a training set and

a trigger language as input.

We fix the trigger language A to be trigger that can be expressed as conjunctions
of two triggers from the set of Boolean functions associated with the binary relations
{all,=,#,<,>,<,>,+1,—1} where all is the universal relation, +; is the integer
successor relation, and —; is the integer predecessor relation. Because we use the

conjunction of two triggers, we can express some quaternary relations.

We have implemented the full framework described in Section 2.2, using the
LFA baseline from Chapter 4. The underlying CP solver is Google OR-Tools [32].
The complete source code of the implementation and datasets for the following
experiments are hosted on GitHub: github.com/hareski/tacq under the Academic
Free License (AFL-3.0). This implementation is also available as a Python package
named tacq on the Python Package Index (PyPI) and can be installed using the
command pip install tacq. The package provides a simple interface for learning

templates from training sets stored in CSV files, making it easy to use in practice.

75

https://github.com/hareski/tacq

5.5. Fxperimental Fvaluation

All experiments were conducted on an AMD Epyc 9554 processor (utilizing 8
cores per run) and 16GB of RAM.

5.5.2 Benchmark Problems

For each benchmark instance, unless otherwise mentioned, we generated indepen-
dently a training and a test set. The solutions are generated by finding solutions
to a constraint network representing the target concept using a CP solver with a
randomized value selection strategy. Negative examples are generated from solutions,
with half of the negative examples created by randomly permuting the values assigned
to two variables in a solution. The other half was created by randomly altering the

value assigned to a single variable in a solution.

We use the same benchmarks as in the experimental evaluation of the baseline
method LFA presented in Chapter 4, with identical parameters: Sudoku, Jigsaw
Sudoku, Schur’s Lemma, Subgraph Isomorphism, N-Queens, Golomb Ruler, Exam
Timetabling, and Nurse Rostering. For a presentation of the target networks of these
benchmarks, we refer the reader to the previous chapter. We present here only a
possible template whose interpretation returns the same constraint network as the

target constraint network used to generate the training set.

Sudoku A candidate template contains three attributes ¢,ou, @col; Psquare r€PrE-
senting the rows, columns, and squares the variables belong to. Three rules should
produce the binary disequality respectively when variables share the same row, col-

umn, or square attribute value. A complete template is presented in Example 5.2.1.

Jigsaw Sudoku A candidate template contains three attributes ¢,ou, Gcot; @jigsaw
representing the rows, columns, and jigsaw pieces the variables belong to. Three
rules should produce the binary disequality respectively when variables share the

same row, column, or jigsaw piece attribute value.

Schur’s Lemma We ran experiments on this problem with n = 9, which is the
parameter with the highest number of solutions (546). A candidate template contains
an attribute ¢;,q representing the indices of the variable and a rule that produces a
ternary NOTALLEQUAL relation applied on x;, y;, 2k if @ina(2:) + Gind(y;) = Ginal2k)

76

Chapter 5. Learning Compact Representations of the Scopes

(for a scope (x1, z2,x3), the rule would be (NOTALLEQUAL, ((¢ind, 1)), (Pind, T2),
(Pina, ©3)), f) with f(a,b,c) =1if a+b=c).

Subgraph Isomorphism A candidate template contains only one attribute ¢;,4
representing the variable indices. A first rule produces the disequality constraints for
all scopes, ensuring that the mapping between the vertices of H and G is a one-to-
one function. A second rule produces a constraint with a binary table relation R
representing the edges of G applied to all (z;, z;) such that (4, j) is an edge in G. This
rule is formally (R, ((¢ind, i), (Pina, x;)), f) with f(a,b) = 1iff ¢ina(2a) = (Pina(zs)+1
mod 5). For this benchmark, negative examples are generated as paths and closed

walks of G' computed using a randomized value selection.

N-Queens (coordinate-based) Our experiments used N = 8, which produces
a problem with 92 distinct solutions. For training data, positive examples were
generated by computing random solutions to the constraint network out of the
92 possible solutions. With the coordinate-based model, there is no clear way to
define the necessary attributes and rules compactly. Therefore, we do not provide a

candidate template for this benchmark.

Golomb Ruler A candidate template can represent this with a single attribute,
®ind, Which stores the index of each variable. A single rule produces the required
quaternary constraints. This rule applies a relation R (which enforces |v; — vy| #
|vs — v4]) to any scope of four variables (z;, z;, x5, 2;) if i < j and k < (i.e., the rule
is (R, ((¢ind, Ta)s (Pind, Tb)s (Gind, Te)s (Ding, a)), f) with f(a,b,¢,d) =1 iff a < b and
c<d).

Exam Timetabling A candidate template contains one attribute ¢gemester repre-
senting the semesters the variables belong to. A first rule, (#, (), f) with f() =1,
produces the binary disequality for all pairs of variables. This corresponds to an
ALLDIFFERENT over all variables. A second rule produces a binary table constraint
that ensures that two courses from the same semester are not scheduled on the same
day. This second rule is, given any scope (x;,), (R, ((¢semesters i), (Psemesters £)), f)

with f(a,b) = 1 iff a = b and R the relation that rejects the pairs of courses from

7

5.5. Fxperimental Fvaluation

the same semester (i.e. (a,b) ¢ Riff @ mod ¢t x r =b mod t x r).

We recall the parameters of the three instances used in our experiments:

[#1] 3 semesters and 2 courses with 3 days, 2 slots and 1 room;
[#2] 4 semesters and 3 courses with 3 days, 2 slots and 2 rooms;

[#3] 5 semesters and 4 courses with 5 days, 2 slots and 2 rooms.

Nurse Rostering A candidate template is given in the Example 5.2.2.

We recall the parameters of the three instances used in our experiments:

[#1] 4 days, 2 shifts and 4 nurses per shift with 12 nurses;
[#2] 5 days, 3 shifts and 5 nurses per shift with 18 nurses;
[#3] 7 days, 3 shifts and 3 nurses per shift with 15 nurses.

All benchmark instances can be modeled with constraints of arity at most 3 (even
Golomb Ruler with n = 10, as shown in Chapter 4). The LFA algorithm, which
generates the initial network N, prioritizes learning lower arity constraints so /N also
meets this maximum arity. Our trigger language A includes the successor function

2 ,and f3 can be expressed by a conjunction of two binary successor functions.

As a result, the conditions of Proposition 2 are satisfied, guaranteeing termination in

our experiments.

5.5.3 Accuracy and Equivalence

Protocol For each benchmark instance, we executed both LFA and our method
TAcQ. The performance of a model is measured in terms of its accuracy, which is
computed on a separate set of 2000 examples generated independently. All training
and test sets contain an equal number of positive and negative examples. We conduct
a series of experiments with increasing numbers of examples in the training sets,
systematically selected within an interval such that the upper bound allows LFA to
achieve 100% accuracy or run out of solutions for the training set. We also record
for each instance whether the learned network is equivalent to the model used for

data generation. We set a timeout of 3 hours for each call to the CP solver.

78

Chapter 5. Learning Compact Representations of the Scopes

0.9

0.8

0.9

0.8
0

0.9

0.8

0.9

0.8

0.9

0.8
0

|
50 100 150 200
(a) Sudoku

T T T

|
100 200 300 400
(c) Jigsaw [#2]

ol
i

50 100 150 200
(e) Nurse Rostering [#1]

-

100 200 300
(g) Nurse Rostering [#3]

500 1 000 1 500
(i) Exam Timetabling [#2]

0.9

0.8

0.9

0.8
0

0.9

0.8

0.9

0.8

0.9

0.8

100 200 300 400 500
(b) Jigsaw [#1]

“}

200 400 600
(d) Jigsaw [#3]

|
100 200 300 400
(f) Nurse Rostering [#2]

T

B

50 100 150

(h) Exam Timetabling [#1]
T

T

——TACQ ||
-= LFA

200 400 600 800 1,000
(j) Exam Timetabling [#3]

79

5.5. Fxperimental Fvaluation

1] 1]
0.9 5 0.9 5
——LFA
08 | | | | 08 | | T T
0 200 400 600 800 0 200 400 600 800
(k) Schur’s Lemma (1) Subgraph Isomorphism
1F T T T T 1 ‘ @_@ @_@ il
0.9 | 1 o9 e TAcq ||
|-=- LFA
0.8 * : * 1 0.8 * ! :
0 50 100 150 200 0 1,000 2,000 3,000
(m) 8-Queens (coordinates model) (n) Golomb Ruler (10 variables)

Figure 5.2: Accuracy over independently generated examples of the network learned by
LANGUAGE-FREE AcQ [LFA] and with our method [TAcQ] as a function of the number of
examples in the training set. We circle the points where the template found is equivalent

to the target.

Accuracy A summary comparing the learning curves of TAcqQ and LFA for

representative benchmarks is shown in Figure 5.2.

We observe that our method consistently yields accuracy results that are either
equivalent or superior to those of LFA across all experiments. For Sudoku, TAcQ
achieves 100% accuracy for all runs with at least 80 examples in the training set,
whereas LFA requires 120 examples. Across the Jigsaw Sudoku instances, TACQ
required on average 25% fewer examples than LFA to consistently reach 100%
accuracy. For Nurse Rostering, TAcQ reduced the required number of examples by
21% on average. For the Exam Timetabling benchmark, the average reduction was
41%, peaking at 80% for the instance [#2].

Several benchmarks (Schur’s Lemma, Subgraph Isomorphism, N-Queens, Golomb
Ruler) have identical accuracy progression for both TAcq and LFA. Concerning
the Subgraph Isomorphism, N-Queens and Golomb Ruler, this occurs primarily
because LFA fails to learn a constraint network over the same language as the target
model. As TAcQ learns a template whose interpretation is a subset of the network N
provided by LFA, no fundamental improvement is possible in this case. For Schur’s

Lemma, the natural template representation of the target model (a single rule that

80

Chapter 5. Learning Compact Representations of the Scopes

produces NotAllEqual(z;,y;, z;) iff i + 7 = k) is not expressible with our trigger
language. This causes TACQ to learn many rules that overfit the initial network N
returned by LFA. To summarize, if we ignore the 8-Queens problem where 100%
accuracy is never reached by neither LFA nor TAcQ, we need on average over all
benchmark instances 22% fewer examples than LFA to consistently learn a network

with 100% accuracy.

Equivalence and runtimes The learned model is equivalent to the target model
for all experiments where TAcQ reached 100% accuracy, with the exception of the
Jigsaw Sudoku benchmark. In these three instances, TAcq fails to consistently
learn an equivalent model. Only 6 out of the 13 templates achieving 100% accuracy
had their interpretation equivalent to the target network. We believe this behavior
is caused by two distinct factors. First, we use a biased training set, as row and
column constraints are sufficient to reject the assignments of all negative examples.
This bias occasionally causes the main loop of Algorithm 1 to exit early, with 100%
accuracy achieved but not equivalence. Second, the model learned by LFA in
the first step contains a large number of redundant constraints. This makes the
constraint optimization models for new rules and attributes more difficult to solve,
with OR-Tools frequently reaching the timeout and failing to consistently return an

optimal solution.

More generally, we noted that TAcQ is significantly slower than LFA on all
benchmarks except Exam Timetabling, sometimes by orders of magnitude as illus-
trated in Table 5.1. This is not surprising because TACQ solves multiple difficult
optimization problems as part of the learning process. This makes TACQ most suited
for applications where examples are scarce (or costly to obtain) and learning can be

done off-line.

5.5.4 Learned Attributes

A key component of our template learning algorithm is the MCAE heuristic, which
we use to determine the width of a new attribute. This heuristic aims to find a
width that balances maximizing the potential for new rules to produce constraints
against the risk of overfitting introduced by a large attribute domain. To illustrate

the behavior and effectiveness of MCAE, we analyze its application during the

81

5.5. Fxperimental Fvaluation

Benchmark |E| LFA TACQ
Sudoku 80 1m 15h 32m 9s

Jigsaw [#1] 400 39s 31h 36m 27s
Jigsaw [#2] 240 46s 27h 20m 9s
Jigsaw [#3] 490 41s 33h 54m 58s

Schur’s Lemma 560 4s 1h 45m 4s

Subgraph Isomorphism 640 12s 19s

8-Queens 184 10s 1m 22s

Golomb Ruler 2100 3m 59s 2h 42m 20s

Exam Timetabling [#1] 119 Is 2s
Exam Timetabling [#2] 300 22s 27s
Exam Timetabling [#3] 500 4m 24s 4m 43s

Nurse Rostering [#1] 100 37s 21m 11s
Nurse Rostering [#2] 280 5m 12s 9h 51m 51s
Nurse Rostering [#3] 210 33s 2h 11m 21s

Table 5.1: Comparison of runtimes for LFA and TAcQ. Runtimes for TAcQ include the
time taken by LFA to learn the initial network N.

learning process for an instance of the Nurse Rostering problem and with the Sudoku

problem.

Nurse Rostering

First, we analyze the learning process for the instance [#3] of the Nurse Rostering
problem (7 days, 3 shifts and 3 nurses per shift with 15 nurses) with 210 examples
in the training set. In this setting, our algorithm learns two attributes ¢, ¢, and
two rules. For each attribute, Figure 5.3 shows the value of cov(w) (defined as the
maximum number of new constraints that can be produced by a rule when the new
attribute has width w) and the value of the MCAE objective function for each
potential width w. Our algorithm selects the width w* that maximizes the MCAE

objective.

82

Chapter 5. Learning Compact Representations of the Scopes

300 8
252

250
200 |
150 |-
100 |-

20

1

5 6 10 15 20

1]
0

[@wlr:;
w

(a) First attribute
T T

T
w
&)

|

40

20

9 —&- cov(w)

— MCAE

| |
2 3 7 10 15 20
(b) Second attribute

|

O
—_

Figure 5.3: Evolution of cov(w) and value of the MCAE objective function depending on
the width of the first and second attributes for the instance [#3] of Nurse Rostering.

The Figure 5.4 illustrates the learned attributes for the instance [#3] of Nurse
Rostering. We discuss the interpretation of these attributes and the behavior of the
MCAE heuristic in detail below.

Attribute ¢; The function cov increases stepwise, with minor gains at widths 3 and
5, followed by a very sharp increase at width w = 6, where 252 new constraints can
be produced. For w > 6, cov plateaus completely until w = 62, which corresponds
to the maximum width possible (the graph stops at 20 for brevity). The MCAE
objective function reaches a global maximum at w = 6, a width that matches a
hidden feature in the data (the number of days). This width corresponds to the 7

days in the problem data, as the attribute values are indexed from 0 to 6.

83

5.5. Fxperimental Fvaluation

(a) Attribute 1 (¢1) (b) Attribute 2 (¢2)

Figure 5.4: Visualization of the learned attributes for the instance [#3] of Nurse Rostering
with 210 examples in the training set. Each cell represents the value ¢;(x; ;) with i the
attribute number, and (7, k) are the coordinates of the variable on a 7 x 9 grid. Attribute
¢1 (left) captures the days of the week (values 0 — 6), while attribute ¢ (right) represents
shifts within each day, with a structure allowing the identification of consecutive shifts

across days.

Attribute ¢, For the second attribute, cov increases rapidly between w = 0 and
w = 3, reaching 54 new constraints produced. Beyond w = 3, the coverage enters a
long plateau, remaining at 54 until w = 6. A very small increase occurs at w =7,
where the maximum observed coverage reaches 55 constraints, after which it plateaus
again until w = 62 (i.e. n—1). The MCAE heuristic correctly identifies the smallest
attribute width w = 3 that enables the creation of a rule producing all the constraints

in the target model missing from the interpretation of the template.

We could observe from the learned template that the first attribute ¢, correctly
partitions the slots into seven days (numbered from 6 to 0, hence corresponding to a
width of 6). Similarly, the second attribute ¢o groups the slots within each day into
numbered shifts such that the last shift of a day is equal to the first shift of the next
day plus one. The two rules learned on these attributes correspond respectively to
“no nurse can be assigned to two slots on the same day” and “no nurse can be assigned
to the last shift of a day and the first shift of the next day”. These interpretations

can be directly recovered from the trigger functions of each rule.

84

Chapter 5. Learning Compact Representations of the Scopes

Sudoku

Figure 5.5 illustrates the attributes learned for the Sudoku problem. The first
attribute ¢ does not capture the rows of the variable in the Sudoku grid. Instead, it
captures for some variables the boxes they belong to, and for others, the columns.
The second attribute ¢o captures the rows. Finally, the third attribute ¢3 captures
the columns and the boxes that are not already captured by the first attribute ¢;.

(a) Attribute 1 (¢1) (b) Attribute 2 (¢2) (c) Attribute 3 (¢3)

Figure 5.5: Visualization of the attributes learned for the Sudoku instance with 80 examples
in the training set. Each cell represents the value ¢;(x;) with ¢ the attribute number, and

(j, k) are the coordinates of the variable on a 9 x 9 grid.

This representation using ¢, and ¢3 which both represent the boxes and columns
of the Sudoku grid, is used to produce the rules that are needed to model the Sudoku
problem. The first rule produced by the template is (#, (z,y)) when ¢ (z) = ¢1(y),
the second rule is (#, (z,y)) when ¢o(z) = ¢(y). Finally, the third rule is (#, (z,v))
when ¢3(x) = ¢3(y). These rules can be interpreted as “no two variables in the same
box can have the same value”, “no two variables in the same row can have the same
value”, and “no two variables in the same column can have the same value” with the
caveat that the first and third rules cover both boxes and columns, while the second

rule only covers rows.

There is no reason for our algorithm to prefer the classic representation using
row, column, and box attributes for the Sudoku problem. This highlights the fact
that our method is not biased towards a specific representation of the problem. It
learns a representation that is compact, but not necessarily the easiest to interpret

by a human expert.

85

5.6. Perspectives

5.6 Perspectives

The results of our experiments demonstrate that templates can effectively capture
the structure of constraint networks, leading to a significant reduction in the number
of training examples required to achieve high accuracy on a wide range of problems.
However, there are several avenues for future work that could further enhance the

applicability of our approach.

5.6.1 Generalization to Other Instances

A significant frontier for constraint acquisition is moving beyond instance-specific
models to those that can generalize across different instances of the same problem.
The current TAcCQ framework learns a template that is tied to the specific structure
of the training instance (e.g. a fixed number of days, a fixed grid size). A promising
direction for future research is to extend this framework to learn the fundamental
rules of a problem, which can then be reapplied with minimal effort to new and

unseen instances.

Some of the methods that have been presented in the introduction of this chapter
already explore this idea of generalization across different instances of the same
problem [8,21,41], but they all require either user-provided variable features/types

or rely on simple, canonical problem structures.

If we hypothesize that we can find invariant rules from instance-specific attributes
using TACQ, an extension of the framework could be designed to learn a set of
rules from a single instance of a problem. When presented with a new instance,
this extended framework would only need to learn the new attributes that map the
instance parameters to the existing rules. This would allow the system to leverage
previously learned rules, significantly reducing runtime and the number of examples
needed for the new instance. The hypothesis that we can find invariant rules from
instance-specific attributes work for many problem classes where the underlying
constraint logic (the rules) remains constant, while the structural mapping (the
attributes) changes with the instance parameters. For example, the rule “all cells in
a row must be different” is fundamental to any Sudoku, but the definition of which

cells constitute a row depends on the grid size.

86

Chapter 5. Learning Compact Representations of the Scopes

This direction presents several open questions. First, we need to address rule
transferability: how can we determine if a set of rules learned from a source instance
is applicable to a target instance? This is non-trivial, especially for problems like
Exam Timetabling, where the underlying constraint language itself can change based
on instance parameters (e.g., number of available days and slots). Second, efficient
attribute adaptation remains a challenge. While learning the new attributes from
scratch is a viable starting point, more sophisticated techniques could be explored.
Could we learn a transformation that maps the attributes from the source instance to
the target instance? This would be particularly powerful for problems with regular,

predictable structural changes.

Finally, we should consider how to design a system that learns directly a param-
eterized model that captures the rules and the structure without being tied to a
specific instance. This would enable the generation of a constraint network for any
instance of a problem class without requiring new examples, effectively creating a

“universal template” for that problem class.

5.6.2 Better Interpretability

The analysis of the learned attributes for the Nurse Rostering and Sudoku problems
confirmed that our method can discover compact and structured representations.
This ability to learn compact models not only improves generalization but also yields
models that tend to be more interpretable than a simple enumeration of constraints,
as they consist of few attributes and rules that could be easily understood by a
human expert. The small number of attributes and rules makes it easy for a human

expert to inspect and understand the learned model.

However, as illustrated in the Section 5.5.4, the learned attributes may not always
correspond to the most natural representation of the problem. For instance, in the
Figure 5.5, the attributes learned for the Sudoku problem do not correspond to
the most natural representation of the problem, as they do not capture the rows,
columns, and boxes of the Sudoku grid in a straightforward way. Such attributes

can be harder for a human to validate or interpret.

A promising direction would be to extract recurring structural patterns, common
variable features and indexing schemes from a large corpus of constraint networks.

This knowledge could then be incorporated into our template learning framework as

87

5.7. Conclusion

structural priors, guiding the attribute discovery process towards more interpretable
representations when possible. However, the systematic collection and analysis of
such models is a significant challenge. Currently, there is no comprehensive database
that catalogs the common structural patterns across a sufficiently large number of
problem classes. While repositories like CSPLib [1] provide problem descriptions,
the number of problems listed is relatively small (96 problems in September 2025),
and they lack the systematic metadata needed to automatically identify common
variable indexing patterns or structural features across problems. The development
of such a system would require significant effort in data collection, and to identify

and transform these patterns into usable priors for the learning algorithm.

5.7 Conclusion

This chapter introduced a novel framework for passive constraint acquisition that
focuses on learning compact and structured representations of constraint networks,
which we call templates. Our work was motivated by a key limitation of the method
LANGUAGE-FREE AcCQ presented in the previous chapter, which treated constraint
scopes as a flat, unstructured set, making them prone to overfitting and requiring
large amounts of examples in the training set. We hypothesized that by explicitly

learning a compact representation, we could achieve better generalization.

Our primary contribution is a two-step acquisition pipeline, TAcQ. It begins
by using a baseline method, LFA, to generate an initial, potentially overly specific,
constraint network. The core of our contribution is the second step: an algorithm
that refines this network into a compact template. This is achieved by iteratively
learning attributes that capture structural properties of the problem variables and
rules that generate constraints based on these attributes. This entire learning process
is formulated as a sequence of constraint optimization problems, allowing us to search

effectively within the vast space of possible templates.

An experimental evaluation across a diverse set of benchmark problems demon-
strates the significant benefits of this approach. Compared to the baseline LFA
method, TAcCQ consistently achieves higher accuracy on unseen data with sub-
stantially fewer training examples. For structured problems like Sudoku, Exam

Timetabling, and Nurse Rostering, our method successfully uncovered the suitable

88

Chapter 5. Learning Compact Representations of the Scopes

structure (such as rows, columns, semesters, or days and shifts) without any prior

knowledge.

89

Chapter 6

Perspectives on CNNs as Oracles

This chapter offers a prospective look into using Convolutional Neural Networks
(CNNs) as oracles for constraint acquisition, exploring a research direction
rather than presenting a complete method. Our goal is to have insights on how

we can reconstruct a constraint network from the behavior of a trained CNN.

We argue that the architectural principles of CNNs (locality and weight sharing)
are an interesting match for constraint acquisition methods, which typically
seek to discover local rules that can be applied across multiple scopes in a

problem.

Applying constraint acquisition methods in this context is challenging. However,
we propose that the unique properties of using CNNs as oracles can be harnessed
to guide the acquisition process. As an illustration of this direction, we suggest
employing explainability techniques like GRAD-CAM to guide the search for

constraint scopes.

Contents
6.1 Introduction 0 .. 92
6.2 Convolutional Neural Networks 94
6.3 CNNsasOracles. v 98
6.4 Use of Explainability Techniques 100

6.5 Conclusion i i i ittt 104

6.1. Introduction

6.1 Introduction

Constraint acquisition has traditionally focused on learning constraint networks from
a human expert who acts as an oracle, providing classifications for examples or
answering queries about the target problem. While effective, this process is often
constrained by the availability, cost, and speed of the human expert. This chapter
studies the case where the oracle is a trained Convolutional Neural Network (CNN),
which can classify a large number of examples quickly and efficiently. Shifting from
human to machine oracles presents both opportunities and challenges for constraint

acquisition.

We develop the idea of using constraint acquisition methods with a CNN oracle.
Given a trained CNN, our goal is to reconstruct a concept-equivalent or closely-
aligned constraint network. If successful, the extracted network serves as a more
interpretable, symbolic model. A domain expert can then analyze this model to
validate whether the CNN has genuinely learned the intended target concept or has
instead converged on spurious correlations or overly simplistic patterns present in its

training data.

Closely Related Work. Many approaches have focused on extracting symbolic
or rule-based representations from neural networks largely under the name of rule
extraction [2]. We distinguish two main families of methods. The first family,
“pedagogical” methods (or black-box), treats the network as a black-box oracle, while
the second, “decompositional” methods, analyzes the network internal structure
(architecture, weights, etc.). A classic example of a pedagogical method is the
TREPTAN algorithm, which queries a trained network to build a decision tree
that mimics its classifications [14]. For CNNs, several methods leverage the network
architectural properties. For instance, the ERIC framework approximates a CNN
behavior with propositional logic rules by associating each learned convolutional filter
with a binary predicate representing a learned concept [40]. The target representation
is typically of the form of “IF-THEN” rules, decision trees, or logical formulas (e.g.,
DNF, Answer Set Programs). This chapter differs from these approaches because
the target representation is a constraint network that can, for example, then be used

to help generate new examples with a constraint solver.

92

Chapter 6. Perspectives on CNNs as Oracles

A distinct and more direct approach to learning constraints with neural networks
is presented in [46], which employs an Equation Learner, a specialized neural network
architecture where activation functions are replaced by primitive mathematical
operations. By coupling this network with a tailored loss function designed to find
decision boundaries, their method trains the network to directly output a constraint
(linear in the paper). This approach differs fundamentally from our proposal. In
their work, the

93

6.2. Convolutional Neural Networks

neural network itself serves as the constraint acquisition algorithm, whereas we use
a separate constraint acquisition method to extract constraints from a pre-trained
CNN.

This chapter will first introduce some background on convolutional neural net-
works (CNNs) and their architectural principles in Section 6.2. We will then introduce
some insight into how CNNs can be used as oracles in constraint acquisition in Sec-
tion 6.3. In Section 6.4, we propose to use insights from explainability techniques
like GRAD-CAM to guide the acquisition process. Finally, we will conclude in
Section 6.5.

6.2 Convolutional Neural Networks

A convolutional neural network (CNN) is a specialized class of feedforward artificial
neural networks designed to process data with a known grid-like topology, such
as images. They are particularly effective for tasks like image classification or
object/pattern detection. CNNs are characterized by their ability to automatically
learn spatial hierarchies of features from the input data, making them well-suited for

visual recognition tasks.

To understand how a CNN processes information, we can examine its fundamental
building block: the artificial neuron, as illustrated in Figure 6.1. Each neuron
functions as a simple computational unit within a layer. It receives a set of inputs
from the preceding layer and performs a two-step operation. First, it calculates a
weighted sum of its inputs, where each input is multiplied by a corresponding weight
that determines its influence. A bias term is then added to this sum, allowing the
neuron to adjust its output independently. Second, this result is passed through a
non-linear activation function, which transforms the value into the final output of

the neuron. This entire operation is captured by the formula:
y=o(W- -X+b)=0c(d waz; +b)
i=1
where:

o X = (z1,m9,...) is the vector of inputs (possibly the outputs of the previous

layer);

94

Chapter 6. Perspectives on CNNs as Oracles

e e Ron
............ - .{_'; - g A0
____________ >., -{_'{§@:1 _ g _':--
@ g :
. - @ g |
X bil f2 I3 fa F(X)
input conv conv dense dense output

Figure 6.1: Illustration of a five-layer CNN architecture for a 1D input. The circles represent
neurons. The input X is processed by two convolutional layers (f1, f2) characterized by
local receptive fields, followed by two fully connected layers (f3, f4) to produce the final
output F'(X). Dotted arrows show all connections, while bold arrows highlight the input
for one example neuron in each subsequent layer. The bold arrows illustrate the locality of
the convolutional layers, where each neuron only connects to a small batch of the neurons

in the previous layer.

o W = (wy,wy,...) is a vector of weights, with each weight w; modulating the
importance or influence of the corresponding input feature x;;

e b is the bias term, a learnable constant that shifts the activation function;

0 is a non-linear activation function, such as the Rectified Linear Unit (RELU)

[17], which determines the final output of the neuron.

A CNN is a type of feedforward neural network, meaning that the information
“flows” in one direction over the neurons, from the input layer through the hidden
layers to the output layer, without any cycles or loops. This is shown in Figure 6.1 by
the arrows connecting the neurons. The arrows only go from left to right, indicating
that the output of one layer is the input to the next layer, and there are no connections
that loop back to previous layers. This is in contrast to recurrent neural networks,

which have connections that can loop back on themselves.

Let a CNN be represented by a function F' : X —), which maps an input X € X
to an output Y €). For simplicity, throughout this chapter, we will assume that the
output is a single value, i.e. Y € R, which is often the case for binary classification

tasks which are the focus of this chapter. By denoting f; as the function implemented

95

6.2. Convolutional Neural Networks

by the [-th layer, we can express the overall function F' as a composition of these

layer functions:
F(X)=(frofr10--0fi)(X)

We briefly present the main layer types of a CNN, which are the convolutional
layer, pooling layer, and fully connected layer. We omit information not essential for
the subsequent discussion. For a more detailed introduction to CNNs, we refer the
reader to one of the seminal works [24] and to the comprehensive textbook on deep

learning [18].

Convolutional Layer The convolutional layer is the core building block of a
CNN. Each neuron multiplies the input values by a vector of weights (called a filter
or kernel) and sums up the results to produce a single value. There are typically
multiple filters in a convolutional layer, each filter produces one output, and these
outputs are then stacked together to form the output of the layer. This principle is
illustrated in Figure 6.1 by the overlapping circles in the first two layers. This process
helps in detecting local patterns, such as edges or textures in an image. There are

two key characteristics of convolutional layers that are important for this chapter:

e Locality: Unlike fully connected layers, where each neuron is connected to
all neurons in the previous layer (i.e. the input X of each layer is a vector
containing all the outputs of neurons from the previous layer), neurons in a
convolutional layer will only use a small subset of the input, which is called
the receptive field. This means that each neuron in a convolutional layer is
only connected to a small region of the input data. This is illustrated in
Figure 6.1 by the arrows, which show the input for one example neuron in
each subsequent layer. The receptive field is typically a small patch of the
input data. Depending on the dimension of the input, this region can be a 1D
(neurons connected to a small segment of the input sequence), 2D (neurons
connected to a small patch of the input grid, e.g. a 3 x 3 patch of pixels in the
grid), ete.

« Weight Sharing: The same weights (W) are used across all neurons for the
same filter in the convolutional layer. This means that the same filter is applied
to different parts of the input, allowing the network to learn features that are

invariant to their position in the input data.

96

Chapter 6. Perspectives on CNNs as Oracles

Throughout this chapter, we call feature map the output produced by the last
convolutional layer. Because convolution preserves spatial arrangement, each location
of the feature map corresponds to a local region in the original input (with potentially

a different size depending on the filter).

Pooling Layer Pooling layers are used to reduce the dimensions (in 2D, the width
and height) of an input, which helps to reduce the computational load and control
overfitting. The most common type of pooling is max pooling where the maximum

value from a small local patch of the input is taken.

Fully Connected Layer A fully connected (or dense) layer is a basic type of
layer in a feedforward neural network (not specifically CNNs) where every neuron in
the layer is connected to every neuron in the previous layer. This is in contrast to
convolutional layers, where connections are local. There is no weight sharing in fully
connected layers, meaning each neuron has its own vector of weights. Fully connected
layers are often used to represent complex relationships in the data, and we assume
that they are used after all convolutional and pooling layers to combine the feature

maps extracted by the convolutional and pooling layers into a final output.

CNNs are fundamentally designed for training on data rather than explicitly
modeling rules. The training process involves optimizing the network parameters
(weights and biases) to minimize a loss function that measures the difference between
the network output and a training set. This data-driven learning approach means that
the knowledge acquired by the network is distributed across millions of parameters
in a way that is not directly interpretable by humans. Consequently, CNNs are often
referred to as black boxes in the context of machine learning because, while they
can make accurate predictions, the reasoning behind their decisions often remains

difficult to interpret by humans.

This optimization is achieved through a process called backpropagation, which
efficiently computes the gradient of the loss function with respect to every parameter
in the network. The gradient essentially measures the influence of each parameter
(weights and biases) on the final error, guiding the learning process. By calculating
the gradient of the final output with respect to the output of internal neurons, one

can determine which neurons were most influential in the network decision for a

97

6.3. CNNs as Oracles

specific input. This concept will be crucial in Section 6.4 when we discuss using
GRrRAD-CAM.

6.3 CNNs as Oracles

The constraint acquisition framework is flexible concerning the nature of the oracle.
While often assumed to be a human expert, the oracle can be any system capable of
providing a training set or answering queries about the problem. A trained machine
learning model, such as a neural network, can serve as an efficient and powerful oracle.
Unlike human experts, who may be limited in the number of examples they can
classify or the speed at which they can provide feedback, a trained neural network
can classify thousands of examples per second. This rapid classification capability
allows for the generation of large training sets, which can be used for constraint

acquisition.

CNNs are a domain of interest for constraint acquisition due to their widespread
success. Initially renowned for computer vision applications, CNNs are now success-
fully applied in many other domains where data has an underlying grid structure or
exhibits local relations. This includes applications in natural language processing
and time-series analysis. CNNs have even been utilized as heuristic approaches for
solving combinatorial problems [25]. The broad and growing relevance of CNNs

makes them an interesting class of oracles to study.

We focus specifically on CNNs (and not any other type of neural network) because
two architectural characteristics make them particularly relevant to constraint network
representation, and therefore especially interesting to study as oracles in constraint

acquisition.

The first is locality, which refers to the fact that filters operate on small local
(i.e. spatially or temporally contiguous) parts of the input. This means that the
features map during the initial convolutional layers are based on local patterns.
When the detection of a conjunction of local features determines the global decision,
without the need for complex global relations (using the fully connected layers), the
underlying concept can be described using a constraint network with potentially
small scopes. This is also the case for disjunctions of local patterns, which we discuss

later in this section.

98

Chapter 6. Perspectives on CNNs as Oracles

The second important characteristic is weight sharing. A single filter is applied
across the entire input, meaning that the same local pattern may trigger a filter
response regardless of spatial position. This suggests that, if it is possible to learn
a constraint network from the CNN; this network will likely be over a constraint

language with few relations applied over many scopes.

We propose a research direction that leverages the strengths of CNNs as oracles
in constraint acquisition. The goal is to reconstruct a constraint network from the
behavior of a trained CNN. This approach is motivated by the desire to understand
whether the concept learned by the CNN can be represented as a constraint network,
and if so, to extract a symbolic representation that can be analyzed by domain
experts. Given a CNN that represents a concept ¢ : DX — {0,1}, the goal is to
reconstruct a constraint network N that represents the concept f : DX — {0,1}
whose solution space coincides with (or closely approximates) the CNN positive
region. To be consistent with classic learning frameworks, we consider a distribution
D over the input space DX. The general goal should be to minimize the expected

loss under this distribution:

L(e,) = Eonp [le(2) — f(2)]]

To achieve this, we treat the CNN as an oracle that can provide examples to
the concept ¢ by classifying assignments. Without more information provided by
the CNN oracle, this method would be considered as a black-box approach, or a

pedagogical approach of rule extraction as specified in the introduction.

In practice, we may be interested in extracting a constraint network whose
non-solution space coincides with the CNN positive classifications. This alternative
perspective can be valuable when the CNN is trained to detect disjunctions of local
patterns. In this case, the CNN positive classifications indicate the detection of the
pattern, and therefore can be naturally interpreted as a violation of a constraint.

The alternative goal should be to minimize:

L, f) = Eanp [|[1 = c(2)] = f(2)]]

Many constraint acquisition methods, in particular LFA presented in Chapter 4
and therefore TACQ with LFA as a baseline in Chapter 5, assume that the oracle

99

6.4. Use of Fxplainability Techniques

provides perfectly accurate classifications for both positive and negative examples.
That is, they assume that the oracle can perfectly distinguish between positive and
negative examples of the target concept without any errors. A CNN is trained to
approximate a target concept based on its training set, but its learned representation
may differ from the initial concept, particularly when evaluating assignments that
deviate from the original training distribution. When the CNN encounters such
inputs that are significantly different from its training examples, its predictions

become unreliable.

There are constraint acquisition methods that are robust to errors, such as those
presented in [34,35]. These methods can handle some level of noise in the training
set. However, they rely on additional prior knowledge about the target concept to
be represented, such as a constraint language expressive enough to represent the
target concept but not too complex to avoid overfitting. In our scenario with a direct

interaction with a CNN, we will assume that this prior knowledge is not available.

The model used in LFA (with k& and r fixed) ensures consistency with the training
set as a set of inviolable hard clauses: any yield constraint network must classify all
examples in the training set in the same way as the CNN. The natural modification
to handle noise would be to associate an “error cost” with each example with a
soft clause, allowing the model to misclassify some examples by paying that cost.
However, this leads to a conflict in the general objective function of the LFA method.
The method is based on the search for the simplest language (minimizing & and r)
to avoid overfitting. This creates a new, two-fold objective: finding a language and a
network that minimizes two completely different cost terms, one for the language
complexity and another for the errors. There is no clear way to balance these

objectives.

6.4 Use of Explainability Techniques

CNNs offer significant advantages over traditional oracles when not treated purely
as black boxes. CNNs can provide additional information that can be leveraged
to improve the constraint acquisition process. CNNs learn weights in each neuron
that encode the concept learned by the network. These weights, along with the

architecture of the CNN, can be used to help the constraint acquisition process.

100

Chapter 6. Perspectives on CNNs as Oracles

Explainability techniques for CNNs have matured significantly, offering methods
to extract interpretable visualizations of the complex decision-making processes of
these networks. A common technique focuses on generating visual explanations
that highlight the regions of the input that are most influential in the network
prediction [26,36,37,39,48,49].

Figure 6.2: Example of a heatmap generated by GRAD-CAM in the original paper [37] for a
CNN trained to detect images with dogs. The input is an image of a dog, and the heatmap
highlights the regions of the image that are most influential for the CNN classification
decision. The original image is shown on the left, and the heatmap is shown on the right.
The heatmap is overlaid on the original image, where warmer colors (e.g., red or yellow)

indicate higher influence and transparency indicates lower influence.

These techniques generate visual explanations, often in the form of heatmaps. A
heatmap is a spatial representation of the input where each variable is assigned a
value. The heatmap highlights the variables of an input that are the most influential
for the CNN classification decision. A heatmap is often represented using colors
overlapping the original input, where warmer colors (e.g., red or yellow) indicate
higher influence and cooler colors (e.g., blue or green) or transparency indicate lower
influence. This visualization helps to understand which parts of the input the CNN

focuses on when making a classification decision.

In this section, we focus on methods specifically designed for CNNs. The Class
Activation Mapping (CAM) [49] is one of the pioneering techniques in this area,
producing a heatmap that indicates the specific regions in the input that a CNN
uses to make a classification decision. However, CAM is only applicable to CNNs
that use only convolutional and pooling layers, without any fully-connected layers.
(The method can work with a last fully-connected layer, but it modifies the CNN,
such that the final fully connected layer is replaced with a global average pooling

101

6.4. Use of Fxplainability Techniques

layer.) Given an input X and a CNN; CAM computes the feature maps of the final
convolutional layer with respect to X and uses the weights of the final pooling layer
to generate a heatmap that highlights the regions of the input that contribute most

significantly to the classification decision.

While the CAM technique required a specific network architecture without fully-
connected layers, the more general GRAD-CAM uses output gradients to compute
feature importance, making it applicable to any CNN architecture [37]. Given an
input X, GRAD-CAM computes the feature maps of the final convolutional layer
with respect to X as the CAM method and calculates the gradients of the output
score with respect to these feature maps. These gradients are then used to weight
the importance of each filter and region in the feature map, producing a heatmap

that highlights the regions of X most influential for the classification decision.

Figure 6.3: Heatmaps generated with the GRAD-CAM method for two negative examples
of a CNN trained on a simple image classification task consisting of detecting the presence
of a 2 x 2 black square in a 20 x 20 black and white image. The overlaid white (1) and
black (0) numbers indicate the original pixel values of the input image. The color of the
heatmap indicates the influence of each variable on the CNN classification decision, with
warmer colors (e.g., red or yellow) indicating higher influence and cooler colors (e.g., blue

or green) indicating lower influence.

The Figure 6.3 shows two heatmaps for two negative examples generated by
GRAD-CAM for a dummy CNN trained on a simple image classification task. The

input is a 20 x 20 black and white image, i.e. a grid of pixels that can take the values

102

Chapter 6. Perspectives on CNNs as Oracles

0 (white) or 1 (black). The CNN has two convolutional layers followed by a fully
connected layer. The classification task is to accept only images that do not contain
a 2 x 2 black square. The CNN is trained with a training set containing 2000 images
with 10% of black pixels, with half containing no square and half containing one

2 x 2 square.’

Given the two inputs containing a small black square, the GRAD-CAM heatmap
highlights the regions of the input that contribute most significantly to the classifica-
tion decision, which in this case is the black square. The heatmap shows that the
CNN has learned to focus on the presence of the black square in the image, which is

consistent with the classification task.

We can leverage the heatmap generated by GRAD-CAM to extract a constraint
network that represents the concept learned by the CNN. The idea is to use the
heatmap to identify the regions of the input that are most important for the classi-
fication decision for each negative example, and then use these regions to hint at
the scopes to be learned during the constraint acquisition. First, let us define a
constraint acquisition problem where the scopes of the constraints are hinted for

each negative example.

Definition 16 (Constraint Acquisition with Hinted Scopes). Given a training set
E =E*UE", where ET is the set of positive examples and E- = {x7,x5,...2, }
is the set of negative examples with, for each negative example x; € E~, a set of
variables denoted X! C X. The goal is to learn a constraint network N that is
consistent with the training set E such that there exists for each negative example x;
a constraint (R, S) in N that rejects a(x;) and with S C X].

We can use the heatmap generated by GRAD-CAM to identify the variables
in the input that are most important for the classification decision. For instance,

79

for each negative example z; , we can define the scopes X| as the set of pixels in
the heatmap that have a value above a certain threshold, indicating that they are
important for the classification decision. This use of internal network information to
guide the learning process means our method is not strictly pedagogical (black-box),
but rather a decompositional approach that leverages the representation of the CNN

to inform the constraint acquisition process.

! Details and all the code to reproduce the experiment are available at

https://gite.lirmm.fr/coconut/cnn-gradcam-visualization

103

https://gite.lirmm.fr/coconut/cnn-gradcam-visualization

6.5. Conclusion

It is important to note that, if a constraint network that can represent the concept
using scopes given by the heatmap information does not exist, it does not necessarily
imply that the underlying concept cannot be represented as a constraint network.
Rather, it may indicate that the CNN has learned an alternative representation
of the same concept. The CNN may rely on its fully connected layers to encode
high arity relations between features extracted by the convolutional layers, and such
global dependencies cannot be captured by a conjunction of constraints over the

scopes defined by the heatmap.

6.5 Conclusion

This chapter has explored the potential of using Convolutional Neural Networks
(CNNs) as oracles within the framework of constraint acquisition. We have argued
that this is a promising research direction because their fundamental architectural
principles (locality and weight sharing) resonate with the structure of many constraint

networks.

We introduced the core idea of treating a trained CNN as an oracle to reconstruct
a concept-equivalent or closely-approximating constraint network. A key challenge
identified is that the predictions of a CNN can be unreliable, especially for inputs
that differ from its training distribution.

On the other hand, the CNN can provide additional information to guide the

Y

acquisition process. We propose to use a “grey-box” approach that leverages ex-
plainability techniques like GRAD-CAM. By analyzing heatmaps of influential input
variables, we can generate “hints” for the scopes of the underlying constraints. A
primary step is the concrete implementation and empirical evaluation of a constraint
acquisition algorithm guided by GRAD-CAM heatmaps. Such research would need
to investigate various strategies for translating heatmap values into candidate scopes

and assess the effectiveness of this guidance on different problems.

104

Chapter 7

Conclusion

This thesis developed and evaluated new methods in passive constraint acquisition
designed to make the learning process significantly more automated. This chapter
summarizes our key contributions, and we conclude by outlining promising directions

for future research.

7.1 Summary of Contributions

First, we introduced LFA (Language-Free Acquisition) in Chapter 4, a novel method
that discards the requirement for a predefined constraint language. The method
learns both the constraints and a suitable language to express them, thus removing
the need to provide a set of candidate relations. This is achieved by framing the
problem as an optimization task with a bias towards simplicity by minimizing the
arity and number of relations. We proved the underlying decision problem to be
NP-complete and proposed a practical algorithm based on a WEIGHTED PARTIAL
MAX-SAT model. Experimental results demonstrated the viability of this approach
across a range of benchmark problems, representing a significant step towards fully

automated constraint acquisition.

Second, we identified and addressed a key limitation of LFA: this method learns
a simple list of scopes. This can lead to the need for a large number of examples to
eliminate few spurious constraints. Chapter 5 tackled this by proposing to learn a
novel, more compact and structured, representation of constraint networks called a
template. This template consists of attributes of variables and rules that generate
constraints based on these attributes. We present the method TAcCQ, that refines

105

7.2. Perspectives

an initial network generated by LFA into a template, effectively capturing patterns
such as “apply this constraint to all variables in the same row”. Our experiments
showed that TACQ reduces the number of examples needed to achieve high accuracy

on structured problems and produces more interpretable models.

Finally, in Chapter 6, we returned to the question of the oracle, shifting the
focus from the classic human experts to machine learning models. We proposed the
direction of using explainability techniques to exploit new types of data that can be

provided by a neural network oracle, such as a CNN.

7.2 Perspectives

The contributions of this thesis open several avenues for future research. We outline

some of the most promising directions below.

Simplicity of the Relations

The notion of simplicity of a language is central to the contribution of Chapter 4,
guiding the design of methods that learn the constraint language without requiring
extensive prior knowledge. While the current work defines simplicity in terms of
language size and arity, this notion could be extended to incorporate the inherent
complexity of the learned relations themselves. Future work could focus on developing
a more nuanced cost function that favors languages constructed from a basis of well-
understood, common relations, thereby promoting the discovery of more intuitive

and generalizable constraint languages.

Interpretability of the Scopes

While the template representation and learning method presented in Chapter 5 offers
a more structured view than a flat list of constraints, the learned attributes may
not always align with the most intuitive understanding of the problem by a human
expert. Future research could explore methods to bias the learning process towards
more canonical attributes, potentially by leveraging statistical analyses of established

constraint programming models.

106

Chapter 7. Conclusion

Robustness to Noise

The methods presented in this manuscript assume a completely reliable oracle.
However, in some scenarios, the provided classifications may contain noise. Developing
more robust constraint acquisition algorithms that can effectively learn from noisy
and potentially unreliable data is a critical area for future research. This will be

essential for the practical application of these methods in a wider range of domains.

New Class of Oracles

The exploration of learning from CNNs in Chapter 6 is a promising direction, but
it presents challenges. The proposed direction of using explainability techniques to
guide constraint acquisition is a first step. This will require investigating various
strategies for translating the outputs of explainability methods into meaningful
guidance for the constraint acquisition process and assessing its effectiveness across

a diverse set of problems and model architectures.

107

Acknowledgments

This work was partially supported by the TAILOR project, funded by EU Horizon
2020 research and innovation programme under GA No 952215, by the Al Inter-
disciplinary Institute ANITI, funded by the French program “Investing for the
Future - PIA3” under grant agreement no. ANR-19-PI3A-0004, and by the ANR
AXTAUM project ANR-20-THIA-0005-01 (Data Science Institute of the University
of Montpellier). Preliminary experiments were conducted with the support of the
ISDM-MESO platform at the University of Montpellier.

I acknowledge the use of multiple Al tools based on large language models
mainly Mistral (mistral-medium-2505), Anthropic (Claude Sonnet 4) and Google
(gemini-2.5-pro) to identify improvements in the writing style. Example of use:
“Please review the following text and suggest improvements for clarity, coherence,
and overall writing style: [insert paragraph here].” None of the Al-generated content
was directly included in the thesis without thorough verification and validation by
the author. The author takes full responsibility for the final content of the thesis.

Current life-cycle analyses of Large Language Model (LLM) inference suggest
a carbon footprint of up to 1.14 grams of CO2e (carbon dioxide equivalent) per
complex query!. For this work, I estimate 500 queries (as a high estimate) with
an average of 0.8g per query, reflecting a mixed use of dense and compact models.
Based on this usage pattern, the total carbon emissions associated with LLM
assistance for this manuscript are estimated at less than 0.4 kg CO2e. This is
equivalent to the carbon footprint of driving a standard gas car for approximately 2
kilometers?. While this environmental impact is relatively low compared to common
daily activities such as transportation and food consumption, it constitutes a new

and additional form of consumption that must be assessed.

! Based on the study “Our contribution to a global environmental standard for AI” by Mistral Al
over Mistral Large 2 according to the Frugal AT methodology developed by AFNOR, (French
Standardization Association). Other studies, as reported in the technical paper “Measuring the
environmental impact of delivering AI at Google Scale” by Google, estimate that the median
Gemini Apps text prompt emits only 0.03 gCO2e. However, the methodology does not detail

emissions depending on the model used or the complexity of the queries.
2 ADEME, French Environment and Energy Management Agency

109

110

1]
2]

Bibliography

CSPLib: A problem library for constraints. http://www.csplib.org, 1999.

Robert Andrews, Joachim Diederich, and Alan B. Tickle. Survey and critique
of techniques for extracting rules from trained artificial neural networks. Knowl.

Based Syst., 8(6):373-389, 1995.

Ekaterina Arafailova, Nicolas Beldiceanu, Rémi Douence, Mats Carlsson, Pierre
Flener, Maria Andreina Francisco Rodriguez, Justin Pearson, and Helmut
Simonis. Global constraint catalog, volume ii, time-series constraints. CoRR,
abs/1609.08925, 2016.

Nicolas Beldiceanu, Mats Carlsson, Sophie Demassey, and Thierry Petit. Global
constraint catalogue: Past, present and future. Constraints An Int. J., 12(1):21-
62, 2007.

Nicolas Beldiceanu and Helmut Simonis. A model seeker: Extracting global
constraint models from positive examples. In Michela Milano, editor, Principles
and Practice of Constraint Programming - 18th International Conference, CP
2012, Québec City, QC, Canada, October 8-12, 2012. Proceedings, volume 7514
of Lecture Notes in Computer Science, pages 141-157. Springer, 2012.

Christian Bessiere, Clément Carbonnel, and Areski Himeur. Learning constraint
networks over unknown constraint languages. In Proceedings of the Thirty-
Second International Joint Conference on Artificial Intelligence, IJCAI 2023,
19th-25th August 2023, Macao, SAR, China, pages 1876-1883. ijcai.org, 2023.

Christian Bessiere, Clément Carbonnel, and Areski Himeur. Apprendre un
csp sans connaitre son langage. Journées Francophones de Programmation par
Contraintes, 2024.

111

http://www.csplib.org

BIBLIOGRAPHY

8]

[10]

[11]

112

Christian Bessiere, Remi Coletta, Abderrazak Daoudi, Nadjib Lazaar, Younes
Mechqrane, and El-Houssine Bouyakhf. Boosting constraint acquisition via gen-
eralization queries. In Torsten Schaub, Gerhard Friedrich, and Barry O’Sullivan,
editors, ECAI 201/ - 21st European Conference on Artificial Intelligence, 18-22
August 2014, Prague, Czech Republic - Including Prestigious Applications of In-
telligent Systems (PALS 2014), volume 263 of Frontiers in Artificial Intelligence
and Applications, pages 99-104. IOS Press, 2014.

Christian Bessiere, Remi Coletta, Emmanuel Hebrard, George Katsirelos, Nadjib
Lazaar, Nina Narodytska, Claude-Guy Quimper, and Toby Walsh. Constraint
acquisition via partial queries. In Francesca Rossi, editor, IJCAI 2013, Pro-
ceedings of the 23rd International Joint Conference on Artificial Intelligence,
Beijing, China, August 3-9, 2013, pages 475-481. IJCAI/AAAI, 2013.

Christian Bessiere, Remi Coletta, Frédéric Koriche, and Barry O’Sullivan. A
sat-based version space algorithm for acquiring constraint satisfaction problems.
In Joao Gama, Rui Camacho, Pavel Brazdil, Alipio Jorge, and Luis Torgo,
editors, Machine Learning: ECML 2005, 16th European Conference on Machine
Learning, Porto, Portugal, October 3-7, 2005, Proceedings, volume 3720 of
Lecture Notes in Computer Science, pages 23-34. Springer, 2005.

Christian Bessiere, Emmanuel Hebrard, Brahim Hnich, Zeynep Kiziltan, and
Toby Walsh. Range and roots: Two common patterns for specifying and
propagating counting and occurrence constraints. Artif. Intell., 173(11):1054—
1078, 20009.

Christian Bessiere, Frédéric Koriche, Nadjib Lazaar, and Barry O’Sullivan.
Constraint acquisition. Artif. Intell., 244:315-342, 2017.

Stephen A. Cook. The complexity of theorem-proving procedures. In Michael A.
Harrison, Ranan B. Banerji, and Jeffrey D. Ullman, editors, Proceedings of the
3rd Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker
Heights, Ohio, USA, pages 151-158. ACM, 1971.

Mark W. Craven and Jude W. Shavlik. Extracting tree-structured representa-
tions of trained networks. In David S. Touretzky, Michael Mozer, and Michael E.
Hasselmo, editors, Advances in Neural Information Processing Systems 8, NIPS,
Denver, CO, USA, November 27-30, 1995, pages 24-30. MIT Press, 1995.

BIBLIOGRAPHY

[15]

[18]

[19]

[20]

[21]

[22]

[23]

Abderrazak Daoudi, Nadjib Lazaar, Younes Mechqrane, Christian Bessiere,
and El-Houssine Bouyakhf. Detecting types of variables for generalization in
constraint acquisition. In 27th IEEFE International Conference on Tools with
Artificial Intelligence, ICTAI 2015, Vietri sul Mare, Italy, November 9-11, 2015,
pages 413-420. IEEE Computer Society, 2015.

Martin Davis, George Logemann, and Donald Loveland. A machine program
for theorem-proving. Communications of the ACM, 5(7):394-397, 1962.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural
networks. In Geoffrey J. Gordon, David B. Dunson, and Miroslav Dudik,
editors, Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13,
2011, volume 15 of JMLR Proceedings, pages 315-323. JMLR.org, 2011.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

Tias Guns. Increasing modeling language convenience with a universal n-
dimensional array, cppy as python-embedded example. In Proceedings of the
18th workshop on Constraint Modeling and Reformulation at CP (Modref 2019),
volume 19, 2019.

Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational
Learning Theory. MIT Press, 1994.

Mohit Kumar, Samuel Kolb, and Tias Guns. Learning constraint programming
models from data using generate-and-aggregate. In Christine Solnon, editor, 28th
International Conference on Principles and Practice of Constraint Programming,
CP 2022, July 31 to August 8, 2022, Haifa, Israel, volume 235 of LIPIcs, pages
29:1-29:16. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2022.

Mohit Kumar, Stefano Teso, and Luc De Raedt. Acquiring integer programs
from data. In Sarit Kraus, editor, Proceedings of the Twenty-Fighth International
Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August
10-16, 2019, pages 1130-1136. ijcai.org, 2019.

Arnaud Lallouet, Matthieu Lopez, Lionel Martin, and Christel Vrain. On

learning constraint problems. In 22nd IEEE International Conference on Tools

113

http://www.deeplearningbook.org

BIBLIOGRAPHY

[24]

[27]

28]

[29]

[30]

[31]

114

with Artificial Intelligence, ICTAI 2010, Arras, France, 27-29 October 2010 -
Volume 1, pages 45-52. IEEE Computer Society, 2010.

Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E.
Howard, Wayne E. Hubbard, and Lawrence D. Jackel. Handwritten digit recogni-
tion with a back-propagation network. In David S. Touretzky, editor, Advances in

Neural Information Processing Systems 2, [NIPS Conference, Denver, Colorado,
USA, November 27-30, 1989], pages 396-404. Morgan Kaufmann, 1989.

Michele Lombardi and Michela Milano. Boosting combinatorial problem model-
ing with machine learning. In Jéréme Lang, editor, Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018,
July 13-19, 2018, Stockholm, Sweden, pages 5472-5478. ijcai.org, 2018.

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model
predictions. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pages 4765-4774, 2017.

Grégoire Menguy, Sébastien Bardin, Nadjib Lazaar, and Arnaud Gotlieb. Auto-
mated program analysis: Revisiting precondition inference through constraint
acquisition. In Luc De Raedt, editor, Proceedings of the Thirty-First Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria,
23-29 July 2022, pages 1873—-1879. ijcai.org, 2022.

Tom Michael Mitchell. Version spaces: an approach to concept learning. Stanford
University, 1979.

Tom Michael Mitchell. Machine Learning. McGraw Hill, 1997.

Ugo Montanari. Networks of constraints: Fundamental properties and applica-
tions to picture processing. Inf. Sci., 7:95-132, 1974.

Mathias Paulin, Christian Bessiere, and Jean Sallantin. Automatic design
of robot behaviors through constraint network acquisition. In 20th IEEE
International Conference on Tools with Artificial Intelligence (ICTAI 2008),

BIBLIOGRAPHY

[32]

[33]

[35]

[36]

[37]

November 3-5, 2008, Dayton, Ohio, USA, Volume 1, pages 275-282. IEEE
Computer Society, 2008.

Laurent Perron and Vincent Furnon. Or-tools (v9.11), 2025.

Marek Piotrow. Uwrmaxsat: Efficient solver for maxsat and pseudo-boolean
problems. In 32nd IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2020, Baltimore, MD, USA, November 9-11, 2020, pages
132-136. IEEE, 2020.

Steve Prestwich. Robust constraint acquisition by sequential analysis. In
Giuseppe De Giacomo, Alejandro Catala, Bistra Dilkina, Michela Milano, Senén
Barro, Alberto Bugarin, and Jérome Lang, editors, FCAI 2020 - 2/th European
Conference on Artificial Intelligence, 29 August-8 September 2020, Santiago de
Compostela, Spain, August 29 - September 8, 2020 - Including 10th Conference
on Prestigious Applications of Artificial Intelligence (PALS 2020), volume 325 of
Frontiers in Artificial Intelligence and Applications, pages 355-362. 10S Press,
2020.

Steven D. Prestwich, Eugene C. Freuder, Barry O’Sullivan, and David Browne.
Classifier-based constraint acquisition. Ann. Math. Artif. Intell., 89(7):655-674,
2021.

Marco Thilio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should I trust
you?": Explaining the predictions of any classifier. In Balaji Krishnapuram,
Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev
Rastogi, editors, Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, San Francisco, CA, USA,
August 13-17, 2016, pages 1135-1144. ACM, 2016.

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from
deep networks via gradient-based localization. In IEEE International Conference
on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pages
618-626. IEEE Computer Society, 2017.

115

BIBLIOGRAPHY

[38]

[39]

[41]

[42]

[43]

116

JP Marques Silva and Karem A Sakallah. Grasp-a new search algorithm for
satisfiability. In Proceedings of International Conference on Computer Aided
Design, pages 220-227. IEEE, 1996.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convo-
lutional networks: Visualising image classification models and saliency maps.
In Yoshua Bengio and Yann LeCun, editors, 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Workshop Track Proceedings, 2014.

Joe Townsend, Theodoros Kasioumis, and Hiroya Inakoshi. ERIC: extracting
relations inferred from convolutions. In Hiroshi Ishikawa, Cheng-Lin Liu, Tomas
Pajdla, and Jianbo Shi, editors, Computer Vision - ACCV 2020 - 15th Asian
Conference on Computer Vision, Kyoto, Japan, November 30 - December 4, 2020,
Reuvised Selected Papers, Part III, volume 12624 of Lecture Notes in Computer
Science, pages 206-222. Springer, 2020.

Dimos Tsouros, Senne Berden, Steven Prestwich, and Tias Guns. Generalizing
constraint models in constraint acquisition. In Toby Walsh, Julie Shah, and Zico
Kolter, editors, AAAI-25, Sponsored by the Association for the Advancement
of Artificial Intelligence, February 25 - March 4, 2025, Philadelphia, PA, USA,
pages 11362-11371. AAAT Press, 2025.

Dimos Tsouros and Tias Guns. A cpmpy-based python library for constraint
acquisition - pycona. In Proc. AAAI 2025 Bridge on Constraint Programming
and Machine Learning (CPML), 2025.

Dimosthenis Tsouros, Senne Berden, and Tias Guns. Learning to learn in
interactive constraint acquisition. Proceedings of the AAAI Conference on
Artificial Intelligence, 38(8):8154-8162, Mar. 2024.

Dimosthenis C. Tsouros and Kostas Stergiou. Efficient multiple constraint
acquisition. Constraints An Int. J., 25(3-4):180-225, 2020.

Dimosthenis C. Tsouros and Kostas Stergiou. Learning max-csps via active con-
straint acquisition. In Laurent D. Michel, editor, 27th International Conference

on Principles and Practice of Constraint Programming, CP 2021, Montpellier,

BIBLIOGRAPHY

[46]

[47]

[48]

[49]

France (Virtual Conference), October 25-29, 2021, volume 210 of LIPIcs, pages
54:1-54:18. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021.

Eduardo Vyhmeister, Rocio Paez, and Gabriel Gonzalez-Castané. Deep neural
network for constraint acquisition through tailored loss function. In Leonardo
Franco, Clélia de Mulatier, Maciej Paszynski, Valeria V. Krzhizhanovskaya,
Jack J. Dongarra, and Peter M. A. Sloot, editors, Computational Science -
1CCS 2024 - 24th International Conference, Malaga, Spain, July 2-4, 2024,
Proceedings, Part V, volume 14836 of Lecture Notes in Computer Science, pages
43-57. Springer, 2024.

Boris Wiegand, Dietrich Klakow, and Jilles Vreeken. What are the rules?
discovering constraints from data. In Michael J. Wooldridge, Jennifer G. Dy,
and Sriraam Natarajan, editors, Thirty-Eighth AAAI Conference on Artificial
Intelligence, AAAI 2024, Thirty-Sizth Conference on Innovative Applications
of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on FEducational
Advances in Artificial Intelligence, FAAI 2014, February 20-27, 2024, Vancouver,
Canada, pages 8182-8190. AAAI Press, 2024.

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In David J. Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars,
editors, Computer Vision - ECCV 2014 - 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part I, volume 8689 of Lecture
Notes in Computer Science, pages 818-833. Springer, 2014.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
Learning deep features for discriminative localization. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV,
USA, June 27-30, 2016, pages 2921-2929. IEEE Computer Society, 2016.

117

	Introduction
	Background
	Constraint Programming and Satisfiability
	Constraint Programming
	Boolean Satisfiability

	Concept Learning
	Concept Learning Task
	Generalization to Unseen Assignments

	Constraint Acquisition
	Oracle and Training Set
	Version Space
	Constraint Acquisition
	Overview of Constraint Acquisition Methods

	Learning over Unknown Constraint Languages
	Introduction
	Language Acquisition
	The Method
	Overview
	The Model

	Experimental Evaluation
	Implementation
	Benchmark Problems
	Network and Language Acquisition
	Detailed Analysis on the Sudoku Problem

	Limitations and Perspectives
	Lack of Structure
	Interpretability of the Language

	Conclusion

	Learning Compact Representations of the Scopes
	Introduction
	Compact Representations
	Learning Templates
	Overview
	The Procedure SaturateWithNewRules
	The Procedure GuessAttributeWidth
	Termination, Correctness and Complexity

	The Model
	Experimental Evaluation
	Implementation
	Benchmark Problems
	Accuracy and Equivalence
	Learned Attributes

	Perspectives
	Generalization to Other Instances
	Better Interpretability

	Conclusion

	Perspectives on CNNs as Oracles
	Introduction
	Convolutional Neural Networks
	CNNs as Oracles
	Use of Explainability Techniques
	Conclusion

	Conclusion
	Summary of Contributions
	Perspectives

