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Constraint Programming

What is Constraint Programming?

Constraint Programming (CP) is a paradigm for solving combinatorial problems.
CP involves two main steps:

@ Modeling the problem with constraints,

@ Solving with a generic solver.
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What is Constraint Programming?

Constraint Programming (CP) is a paradigm for solving combinatorial problems.
CP involves two main steps:

@ Modeling the problem with constraints,

@ Solving with a generic solver.

Benefits:
m Separation of modeling and solving,
m Expressiveness for combinatorial problems,

m Efficient generic solving techniques.

CP is widely used in scheduling, logistics, timetabling, etc.
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Constraint Programming

Constraint Programming Workflow

Planning a Work Schedule (Nurse Rostering Problem)

Imagine you need to assign shifts to 15 nurses over a week with 3 shifts per day
while respecting the following rules:

m Each shift must be covered by 3 nurses.
m A nurse cannot be assigned to two different shifts on the same day.

m A nurse cannot work the last shift of a day and the first shift of the next day.
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.‘kﬂ
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Constraint Programming

Variables and Domains

Definition | Variable

A variable represents an unknown that needs to be determined.

m A variable has an associated domain: a finite set of possible values it can take.
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Constraint Programming

Variables and Domains

Definition | Variable

A variable represents an unknown that needs to be determined.

m A variable has an associated domain: a finite set of possible values it can take.

An assignment gives a value from the domain to each variable.
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Constraint Programming

In the nurse rostering problem:

m Variables X: x;; , is the nurse assigned to slot / of shift j on day k.
m Domain: {1,2,...,15} (available nurses)

Dayl Day2 Day3 Day4 Day5 Day6 Day7
shift 1 (OO UJOO 000 OO0 000 000 000
Shift 2 (OO (OO OO0 000 000 00O 0od

shift 3 (U (OO0 000 000 000 0od 00d
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In the nurse rostering problem:

m Variables X: x;; , is the nurse assigned to slot / of shift j on day k.
m Domain: {1,2,...,15} (available nurses)

Dayl Day2 Day3 Day4 Day5 Day6 Day7
shift 1 (OO UJOO 000 OO0 000 000 000
X1,2,5

shift2 000 OO0 000 000 @O0 000 000

shift 3 (U (OO0 000 000 000 0od 00d
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Constraint Programming

Constraint

Definition | Constraint

A constraint over a set of variables X and a domain D is a pair (S, R) where:

m S C X is the scope (the variables involved).

m R is the relation (the allowed combinations of values for the variables in S).
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Constraint Programming

Constraint

Definition | Constraint

A constraint over a set of variables X and a domain D is a pair (S, R) where:
m S C X is the scope (the variables involved).

m R is the relation (the allowed combinations of values for the variables in S).

A constraint accepts an assignment if values in S belong to R; otherwise it rejects it.
The arity of a constraint is the number of variables in its scope.

S = (x1,25,%25)

m R={(a,b)|a#b}
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Constraint Programming

The Constraints of the Nurse Rostering Problem

Dayl Day2 Day3 Day4 Dayb5 Day6 Day7

shift 1 (JUJ (JOO OO OO0 OO0 000 00O

shift 2 (JUJJ (JOO OO OO0 OO0 000 00O

shift 3 (O (OO OO0 000 000 000 00O
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Constraint Programming

The Constraints of the Nurse Rostering Problem

Dayl Day2 Day3 Day4 Dayb5 Day6 Day7

swie1 (L) £ £ £ £ b D
swiv2 (L1 £ £ £ £ b D
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Constraint Programming

The Constraints of the Nurse Rostering Problem

Dayl Day2 Day3 Day4 Dayb5 Day6 Day7

s 1 (S0 D o8 OB o5 oAb 8D

..........................................

shift 2 (5D CUgdlD ObdD CBdD CObdD Ohdp 0D
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Constraint Programming

Constraint Networks and Constraint Languages

Definition | Constraint Network

A constraint network is a triplet N = (X, D, C) where:

m X is a set of variables {xi,...,x,};
m D is a finite domain of values for the variables;

m C is a set of constraints {ci,...,cn}.
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Constraint Programming

Constraint Networks and Constraint Languages

Definition | Constraint Network

A constraint network is a triplet N = (X, D, C) where:
m X is a set of variables {xi,...,x,};
m D is a finite domain of values for the variables;

m C is a set of constraints {ci,...,cn}.

Definition | Constraint Language

A constraint language [ is a set of relations over a domain.

» A network N is over I if all constraints of N use relations from .
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Constraint Programming

Define the problem as a constraint network

Variables and Domains:

m Variables X: x;;  is the nurse assigned to slot / of shift j on day k.
m Domain D: {1,2,...,15}.
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Constraint Programming

Define the problem as a constraint network

Variables and Domains:

m Variables X: x;;  is the nurse assigned to slot / of shift j on day k.
m Domain D: {1,2,...,15}.

Constraints:
m Each shift must be covered by at least 3 nurses.
> Xk 7# xijk forall i # i’, shifts j and days k.
m A nurse cannot be assigned to two different shifts on the same day.
> Xk 7# xij.« for all slots k and k’, shifts j # j’ for all days k.
m A nurse cannot work the last shift of a day and the first shift of the next day.
» X; 3.k 7# Xi1,k+1 for all slots i and /" and days k.

Areski HIMEUR Thesis Defense 8 /38



Constraint Programming

Define the problem as a constraint network

Variables and Domains:
m Variables X: x;;  is the nurse assigned to slot / of shift j on day k.
m Domain D: {1,2,...,15}.
Constraints:
m Each shift must be covered by at least 3 nurses.
> Xk 7# xijk forall i # i’, shifts j and days k.
m A nurse cannot be assigned to two different shifts on the same day.
> Xk 7# xij.« for all slots k and k’, shifts j # j’ for all days k.

m A nurse cannot work the last shift of a day and the first shift of the next day.

» X; 3.k 7# Xi1,k+1 for all slots i and /" and days k.

This network is defined over the constraint language I = {#}.
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Constraint Programming

Define the problem as a constraint network

Variables and Domains:

m Variables X: x;;  is the nurse assigned to slot / of shift j on day k.
m Domain D: {1,2,...,15}.
Constraints:
m Each shift must be covered by at least 3 nurses.
> Xk 7# xijk forall i # i’, shifts j and days k.
m A nurse cannot be assigned to two different shifts on the same day.
> Xk 7# xij.« for all slots k and k’, shifts j # j’ for all days k.
m A nurse cannot work the last shift of a day and the first shift of the next day.
» X; 3.k 7# Xi1,k+1 for all slots i and /" and days k.
This network is defined over the constraint language I = {#}.

Challenge | Designing a constraint network representing a given problem can be difficult.

Areski HIMEUR Thesis Defense



1 | Constraint Programming

| Constraint Acquisition

Learning over Unknown Languages

3 | i
4 | Learning Compact Representations
5 | Perspectives and Conclusion



Constraint Acquisition

Examples and Consistency

Definition | Example

An example over a set of variables X with domain D is composed of:
® an assignment to X;

m a classification label as a positive example or as a negative example.

Definition | Consistency

A constraint network N is consistent with a set of examples E if:
m All positive examples in E are solutions of N.

m All negative examples in E are non-solutions of N.
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Constraint Acquisition

Illustration of Passive Constraint Acquisition

. % Constraint Network ﬂ

Acquisition
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Constraint Acquisition

Formal Definition

Definition | Passive Constraint Acquisition Task

Input: = (X, D): a set of variables and a finite domain;
m [ a constraint language;
m E: a set of examples.

Goal: Find a constraint network over I' consistent with E.
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Constraint Acquisition

Formal Definition

Definition | Passive Constraint Acquisition Task

Input: = (X, D): a set of variables and a finite domain;
m [ a constraint language;
m E: a set of examples.

Goal: Find a constraint network over I' consistent with E.

CONACQ.1 [Bessiere et al., 2005, 2017], MODELSEEKER [Beldiceanu and Simonis, 2012],
BAYESACQ [Prestwich et al., 2021], COUNT-CP [Kumar et al., 2022]

Areski HIMEUR Thesis Defense 11 / 38



Constraint Acquisition

Areski HIMEUR Thesis Defense




Constraint Acquisition

Areski HIMEUR Thesis Defense




Constraint Acquisition

~

T

\\_/

!

[ limits to a
set of candidate
constraints

Areski HIMEUR Thesis Defense




Constraint Acquisition

Constraints that reject
positive examples

N
@

\_—/

I limits to a
set of candidate
constraints

Areski HIMEUR Thesis Defense




Constraint Acquisition

[ limits to a

—_— set of candidate
/ \< constraints

Constraints that reject
positive examples
\/< / Minimal sets of
constraints required
to reject all neg-

ative examples

Areski HIMEUR Thesis Defense




Constraint Acquisition

[ limits to a
set of candidate
constraints

Rejects a positive €

27777,
-r/////////// 77

Z2777777

Constraints that reject
positive examples

$0000005000500000007
///////////////////

Minimal sets of
constraints required
to reject all neg-
ative examples

Areski HIMEUR Thesis Defense




Constraint Acquisition
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Constraint Acquisition
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Constraint Acquisition

Definition | Passive Constraint Acquisition Task

Input: = (X, D): a set of variables and a finite domain;
m [: a constraint language;
m E: a set of examples.

Goal: Find a constraint network over [ consistent with E.
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Constraint Acquisition

Definition | Passive Constraint Acquisition Task

Input:  m (X, D): a set of variables and a finite domain;

m |[: a constraint language;

m E: a set of examples.
Goal: Find a constraint network over I' consistent with E.

How to choose the constraint language?

Problem | Reliance on prior knowledge prevents automated modeling.

Areski HIMEUR Thesis Defense
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Learning over Unknown Languages

Motivation

All current approaches require some knowledge of the
constraint language of the output network.

o ETTED
0

Acquisition
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Learning over Unknown Languages

Our contribution

We develop a constraint acquisition method that
constructs a constraint language as part of the learning process.

e
———
. Constraint Network

Acquisition
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Learning over Unknown Languages

In general, given a set of examples, a large number of constraint languages can be used.
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Learning over Unknown Languages

In general, given a set of examples, a large number of constraint languages can be used.

Problem | Some languages are clearly unsatisfactory from a practical point of view

» Examples:
» (x =1,y =2,z =3) is a positive example.
» (x=3,y=2,z=1), (x=1,y=3,z=2) and (x =3,y = 1,z = 2) are negative examples.

» A consistent network:

EED ONED D

» Another consistent network:

{(a,b,c) | b2 + logy(c + 1) = 4}

Areski HIMEUR Thesis Defense 16 / 38



Learning over Unknown Languages

Intuition | The best constraint language is the simplest.

First approximation: the smallest language in terms of its arity and number of relations.
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Intuition | The best constraint language is the simplest.

First approximation: the smallest language in terms of its arity and number of relations.

Sub-Problem

Instance: Set of examples E; two integers k and r.

Question: Is there a constraint network over a language with at most k relations and
arity at most r and consistent with E7?
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Learning over Unknown Languages

Intuition | The best constraint language is the simplest.

First approximation: the smallest language in terms of its arity and number of relations.

Sub-Problem

Instance: Set of examples E; two integers k and r.

Question: Is there a constraint network over a language with at most k relations and
arity at most r and consistent with E7?

This problem is NP-complete even for (k,r) = (1,1).
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Learning over Unknown Languages

The LFA method (Language-Free Acquisition)

Method | Compute a consistent constraint network with minimum (k, r).

» Strategy: minimize k + r?
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Learning over Unknown Languages

The LFA method (Language-Free Acquisition)

Method | Compute a consistent constraint network with minimum (k, r).

» Strategy: minimize k + r?

» Tie-breaking: lower arity, more constraints, tighter constraints

Construct and solve a model for each (k, r) by increasing order.
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Learning over Unknown Languages

Find a network for a given (k,r)

For given (k, r), we compute a constraint network or prove that none exists by solving a
WEIGHTED PARTIAL MAX-SAT instance.
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For given (k, r), we compute a constraint network or prove that none exists by solving a
WEIGHTED PARTIAL MAX-SAT instance.

m We ensure that the constraint language has k relations and arity r.

m We ensure that the output network is consistent with the examples.
m We optimise the following criteria:

» First we maximize the number of constraints.
» Then we maximize the tightness of constraints.

Areski HIMEUR Thesis Defense 19 / 38



Learning over Unknown Languages

Find a network for a given (k,r)

For given (k, r), we compute a constraint network or prove that none exists by solving a
WEIGHTED PARTIAL MAX-SAT instance.

m We ensure that the constraint language has k relations and arity r.

m We ensure that the output network is consistent with the examples.
m We optimise the following criteria:

» First we maximize the number of constraints.
» Then we maximize the tightness of constraints.

Try (k=1,r=1) el (k=2,r=1) il .. 245, Output Network
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Learning over Unknown Languages

Protocol for experiments

Examples Generation

» We define a target network for various benchmarks.
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Learning over Unknown Languages

Protocol for experiments

Examples Generation

» We define a target network for various benchmarks.

» Generate examples from the target with 50% positive and 50% negative examples.
Run LFA to learn a network with different numbers of examples.

Evaluation

» Accuracy: Count examples needed for 100% accuracy (independent test set).
» Qualitative: Check if the learned network is:

o the target network,
o an equivalent network,
o over the target language.
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Learning over Unknown Languages
Summary of results over various benchmarks

Average number of examples

Benchmark for 100% accuracy Language Network
Sudoku 200 (/] (/]
Jigsaw [3 instances] 900 (/] ()
Nurse Rostering [3 instances] 467 (/] (/]
Exam Timetabling [3 instances] 867 (/] (/]
Schur's Lemma 600 (/] (/]
Subgraph Isomorphism 700 (%] o
Golomb Ruler (10 variables) 3200 (%] o
8-Queens (coordinates model) - (X (%)

@ Target @ Equivalent € Not learned
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Learning over Unknown Languages

Residual Constraints

Residual constraints are those that are not in the target network
but are consistent with all provided examples.

Areski HIMEUR Thesis Defense




Learning over Unknown Languages
Residual Constraints
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Learning over Unknown Languages

Limitation: Lack of Structure

m LFA does not try to capture the structure of the problem;

m LFA requires numerous examples to eliminate few residual constraints.
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Learning over Unknown Languages

Limitation: Lack of Structure

Limitations

m LFA does not try to capture the structure of the problem;

m LFA requires numerous examples to eliminate few residual constraints.

Instead of learning constraints using a flat list of scopes:

X1,1 7 X122, X12 # X1.3, - .-
we want to learn rules such as:

“All variables in the same row must be different.”
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Learning over Unknown Languages

1 | Constraint Programming
2 | Constraint Acquisition
3 | Learning over Unknown Languages

4 | Learning Compact Representations

5 | Perspectives and Conclusion
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Learning Compact Representations

Learning Compact Representations

Our claim

Learning compact representations of constraint networks is the key to better generalization.
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Learning Compact Representations

Our claim

Learning compact representations of constraint networks is the key to better generalization.

To this end, we propose:

@ A novel, compact representation for structured networks, which we call template.

@ A new acquisition framework, TAcCQ, that learns these templates directly from examples.
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Learning Compact Representations

What is a Template?

@ Attributes: Functions {¢1, ¢2, ...} that assign numerical features to variables.

@ Rules: Mechanisms for producing many constraints based on attributes.
> A relation (e.g., #),
» A condition on some attributes of the variables (e.g., same attribute value).

A rule produces a constraint for each scope of variables satisfying the condition.
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Learning Compact Representations

Example | Template for the Sudoku

Variables: 81 variables {x;; | i,j € [0..8]}
Attributes: ¢row(xij) =i ; dcol(Xij) =J i Psquare(Xij) = {

Prow ¢square

Rules:
@ Apply # to (x,y) if drow(X) = Prow(y)-

@ Apply # to (x,y) if ¢col(X) = dcal(y)-

© Apply # to (x,y) if Psquare(X) = Psquare(y)-
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Learning Compact Representations

The TAcQ Learning Framework
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Learning Compact Representations

The TAcQ Learning Framework

A two-step process:

@ Learn an initial network: Use a baseline method to learn an initial network N

@ Refine this network into a template: Learn a template that produces a large subset of
the constraints of V.
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Learning Compact Representations

The Template Learning Algorithm

Algorithm sketch

Input: A set of examples E and an initial network N consistent with E.
Output: A template T consistent with E.

Areski HIMEUR Thesis Defense 30 /38



Learning Compact Representations

The Template Learning Algorithm

Algorithm sketch

Input: A set of examples E and an initial network N consistent with E.
Output: A template T consistent with E.

@ Start with an empty template T

Areski HIMEUR Thesis Defense 30 /38



Learning Compact Representations

The Template Learning Algorithm

Algorithm sketch

Input: A set of examples E and an initial network N consistent with E.
Output: A template T consistent with E.

@ Start with an empty template T
@ While the template T is not consistent with E:

Areski HIMEUR Thesis Defense 30 /38



Learning Compact Representations

The Template Learning Algorithm

Algorithm sketch

Input: A set of examples E and an initial network N consistent with E.
Output: A template T consistent with E.

@ Start with an empty template T
@ While the template T is not consistent with E:
©® Guess a new attribute

Areski HIMEUR Thesis Defense 30 /38



Learning Compact Representations

The Template Learning Algorithm

Algorithm sketch

Input: A set of examples E and an initial network N consistent with E.
Output: A template T consistent with E.

@ Start with an empty template T
@ While the template T is not consistent with E:

©® Guess a new attribute
@ Greedily add rules that produce many new constraints of
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Learning Compact Representations

Attribute Width and Generalization

The number of distinct values an attribute takes (its width) affects the maximum number of
constraints produced by a rule based on that attribute (the coverage).

Width too small Width too large

Underfitting Overfitting
Few constraints are produced. Too many constraints are produced.
We fail to capture the problem. We capture the residual constraints.
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Learning Compact Representations

The Maximum Cover Above Expectation (MCAE) heuristic

Constraints produced

The MCAE heuristic looks for the attribute
with a trade-off between width and coverage.
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Learning Compact Representations

The Maximum Cover Above Expectation (MCAE) heuristic

The MCAE heuristic looks for the attribute
with a trade-off between width and coverage.
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The Maximum Cover Above Expectation (MCAE) heuristic

The MCAE heuristic looks for the attribute
with a trade-off between width and coverage.
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Learning Compact Representations

Protocol for experiments

We compare how many examples LFA and LFA+TAcQ need to learn benchmark problems.
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Learning Compact Representations

Protocol for experiments

We compare how many examples LFA and LFA+TAcQ need to learn benchmark problems.

m We generate an ordered sequence of examples,

m Both methods learn from the same sequence,

m We record the number of examples needed to reach 100% accuracy.
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Learning Compact Representations
Experimental Evaluation

Problem Examples for 100% accuracy | Reduction
LFA LFA+TAcQ
Sudoku 120 80 33%
Jigsaw [3 instances] 497 377 24%
Nurse Rostering [3 instances] 240 197 18%
Exam Timetabling [3 instances] 845 306 64%
Schur’'s Lemma 560 560 0%
Subgraph Isomorphism 640 640 0%
Golomb Ruler (10 variables) 2100 2100 0%
8-Queens - - -
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Learning Compact Representations
Experimental Evaluation

Problem Examples for 100% accuracy | Reduction
LFA LFA+TAcQ
( Sudoku 120 80 33% )
Jigsaw [3 instances] 497 377 24%
Nurse Rostering [3 instances] 240 197 18%
Exam Timetabling [3 instances] 845 306 64%
Schur’'s Lemma 560 560 0%
Subgraph Isomorphism 640 640 0%
Golomb Ruler (10 variables) 2100 2100 0%
8-Queens - - -
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Learning Compact Representations

Results: Learning Interpretable Attributes

CQ learns attributes corresponding to meaningful features
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Learning Compact Representations

Results: Learning Interpretable Attributes

TACcCQ learns attributes corresponding to meaningful features

Figure: Illustration of the three attributes learned by TAcQ for Sudoku.
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Perspectives and Conclusion

Perspectives ‘ Improving Accuracy and Interpretability

1 | Refined simplicity of relations

Path: Define simplicity with a construction cost.
m Define a basis of primitives (e.g., {=,<,>,...});

m Favor relations constructible from these primitives with few operations.

2 | Better interpretability of attributes

Path: Bias towards interpretable attributes.
m Leverage statistical analysis of existing CP models (e.g., CSPLib);

m Guide learning to prefer this attribute distribution.
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Perspectives and Conclusion

Perspectives ‘ Broadening Applicability

3 | Robustness to noise

Limitation: LFA /TAcQ treat examples as ground truth.

m In some scenarios labels may be incorrect;
m Path: Relax the Max-SAT model.

Minimize (Model Complexity + Examples Classification Error)

4 | New class of oracles

Challenge: Use black-box models (e.g., CNNs) as oracles instead of humans.

Path: Leverage explanation methods (e.g., Grad-CAM for CNNs) to guide acquisition.
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Perspectives and Conclusion

Conclusion

Summ

Problem: Reliance on prior knowledge prevents automated modeling.

» LFA: Enables learning without a language.

» TAcQ: Recovers structure for better generalization.
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Perspectives and Conclusion

Conclusion

Problem: Reliance on prior knowledge prevents automated modeling.

» LFA: Enables learning without a language.

» TAcCQ: Recovers structure for better generalization.

LFA and TAcQ are publicly available:

Published at 1JCAI-2023 Published at ECAI-2025

Source code: Olanguage-free-acq Source code: OTAcq

pip install languageFreeAcq pip install tacq
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